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Keyword advertising, or “sponsored links” that appear alongside online search results or other online content, has
grown into a multibillion-dollar market. Providers of keyword advertising, such as Google and Yahoo, profit by
auctioning keywords to advertisers. An issue of increasing importance for advertising providers is the “share
structure” problem—that is, of the total available resources for each keyword (in terms of exposure), how large a
share should be set aside for the highest bidder, for the second-highest bidder, and so on. The authors study this
problem under a general specification and characterize the optimal share structures that maximize advertising
providers’ revenues. They also derive results on how the optimal share structure should change with advertisers’
price elasticity of demand for exposure, their valuation distribution, total resources, and minimum bids. The authors
draw implications for keyword auctions and other applications.
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1Different slots may generate different amounts of exposure.
For example, empirical studies suggest that higher-ranked slots
generate more exposure than lower-ranked ones on the same page
(Pieters and Wedel 2004).

2Indeed, Google provides advertisers an estimated position
along with the expected number of impressions in its Traffic Esti-
mator tool. This tool can be used to communicate the share struc-
tures to advertisers before auctions because it provides sufficient
information on how much exposure can be expected for being in a
particular rank.

3Advertising providers do not publish details of their auctions.
However, existing evidence suggests that they use the latter

the second-highest advertiser gets the second-best slot, and
so on. In contrast, we view resources for auctioning as the
aggregate exposure that all available slots generate for a
keyword phrase and propose that advertising providers can
choose “share structures”—that is, how large a share of the
total advertising resources should be set aside for the high-
est bidder (advertiser), for the second-highest bidder, and so
on.1 The focus of this article is to address the share structure
problem in keyword auctions.

It is practical for advertising providers (including adver-
tising networks and publishers) to manage share structures
actively and communicate them to advertisers. To tailor the
share of advertising resources allocated to an advertisement,
advertising providers may randomize the allocation of the
advertisement among available slots. For example, advertis-
ing providers can let two advertisers time-share a slot. An
advertising network can also choose the number of Web
sites on which to display an advertisement. To communicate
the share structure to advertisers, advertising providers can
provide estimated exposure for the highest bidder, the
second-highest bidder, and so on, so that advertisers can bid
accordingly.2

For several reasons, advertising providers should
actively manage share structures rather than simply assign
the first slot to the highest advertiser, the second slot to the
second-highest advertiser, and so on.3 First, for some key-

Keyword advertising, also known as “sponsored
links,” is a form of targeted online advertising in
which the placement of advertisements is triggered

by keywords that users search or by keywords embedded in
online content. Since its inception on search engines in the
late 1990s, keyword advertising has quickly grown into a
leading form of online advertising, accounting for 40% of
today’s online advertising market. A key success factor of
keyword advertising is its ability to deliver the most rele-
vant advertisements to online users. In addition, keyword
advertising providers, such as Google and Yahoo, run real-
time auctions for millions of different keywords, so even
small marketers can afford to compete for exposures in their
respective markets. eMarketer (2007) predicts that keyword
advertising revenue will grow from $6.7 billion in 2007 to
$16.9 billion in 2011.

The surge of keyword advertising has attracted attention
from academic communities. Several researchers have
examined the design of keyword auctions (e.g., Edelman,
Ostrovsky, and Schwarz 2007; Liu, Chen, and Whinston
2009; Varian 2007) under the framework of “slot/position
auctions,” in which the highest advertiser gets the best slot,
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approach. For example, Google states, “Ads are positioned on
search and content pages based on their Ad Rank. The ad with the
highest Ad Rank appears in the first position, and so on down the
page” (https://adwords.google.com/support/bin/answer.py?answer=
6111). Yahoo and MSN similarly display higher-ranked advertise-
ments in more favorable positions.

words, advertisers far outnumber the available slots. As a
result, advertising providers may want to let multiple adver-
tisers time-share a slot. Second, assigning the jth slot to the
jth-highest advertiser may be a natural choice when there is
a single Web site, but with the expansion of keyword adver-
tising, advertising providers, such as Google and Yahoo,
tend to have a large advertising network that offers many
similar Web pages at the same time. Being in the top slots
of all Web pages may be too much exposure for any single
advertiser. Third, how advertising slots are located on a
page is often up to the publishers. Slots may have no mean-
ingful ranking (e.g., horizontally arranged slots may gener-
ate roughly the same exposure). In summary, many advan-
tages exist for advertising providers to tailor the shares of
advertising resources for advertisers of different ranks in the
bidding outcome.

The issue of optimal share structures holds special
importance for online advertising. Keyword auctions power
both “sponsored search” (i.e., keyword advertisements that
appear alongside search engine results) and “contextual
advertisements” (i.e., keyword advertisements that appear
alongside regular content). For example, Google uses key-
word auctions to sell both sponsored search on its main
search site and contextual advertisements on hundreds of
thousands of Web sites in its advertising network. Keyword
advertising providers also actively seek expansion of key-
word auctions to other advertising formats, such as display
and video advertising, and to other media, such as mobile
devices, radio, and print advertising. Recently, Google
acquired DoubleClick, a leading Internet display advertis-
ing provider, which has helped it expand beyond keyword
advertising. Google allows advertisers to bid for placement
of video advertisements on the popular video site YouTube.
Both Google and Yahoo offer auction-powered print adver-
tising services. As of March 2008, Yahoo’s Newspaper Con-
sortium comprised more than 600 newspapers. Google’s
Print Ads has enlisted more than 700 newspapers. As more
advertising resources become available for auctions, it is of
increasing importance for advertising providers to optimize
share structures for these resources.

We use a game-theoretical framework to address the
optimal share structure problem. To our knowledge, this
article is the first to endogenize the share structure of online
advertising auctions and to study its optimal design. We
assume that the advertising provider can divide total adver-
tising resources into multiple shares. Advertisers’ valuation
for a share is determined by the size of the share and a pri-
vate valuation factor. Advertisers are invited to bid their
willingness to pay per unit of resource (or unit price). The
advertising provider allocates shares such that the advertiser
that offers to pay the highest unit price receives the largest
share, the advertiser who offers to pay the second-highest

unit price receives the second-largest share, and so on. We
use this model framework to identify factors that are rele-
vant to the share structure design problem and derive man-
agerial guidelines on how different factors affect the opti-
mal share structure design.

This article makes a substantive contribution to the liter-
ature on keyword auction design. First, we characterize the
optimal share structure in a general setting. We conclude
that when advertisers’ valuation is linear or convex in share
size, a single grand share is optimal. When advertisers’ val-
uation is sufficiently concave, multiple shares may become
optimal. In general, the optimal share structure consists of a
series of “plateaus,” or consecutive shares of identical size.
We find that the occurrence of plateaus is determined
mainly by the distribution of advertisers’ valuation factors.

Second, we offer insights into how the optimal share
structure should change with several underlying demand or
supply factors. We focus on how the steepness of the opti-
mal share structure is affected by the following factors:
advertisers’ price elasticity, advertisers’ valuation distribu-
tion, total resources, and minimum bids. A share structure is
steeper if it has larger high-ranked shares and smaller low-
ranked ones.

We define advertisers’ price elasticity as the percentage
of change in advertisers’ demand for exposure resulting
from a 1% change in price. We find that as advertisers’ price
elasticity decreases, the advertising provider should use a
less steep share structure. When advertisers have near-
perfect or perfect elastic demand, the advertising provider
should use the steepest share structure, allocating as many
resources as possible to the highest advertisers.

A change in advertisers’ valuation distribution affects
the optimal share structure in the following way: The opti-
mal share structure should remain the same in the case of
“scaling” (i.e., multiplying each advertiser’s valuation fac-
tor by a common factor) and be less steep when the valua-
tion distribution is “shifted” to the right (i.e., increasing
each advertiser’s valuation factor by a common factor).

When total resources increase, the absolute share sizes
increase. However, changes in percentage values of shares
depend on how advertisers’ price elasticity of demand
changes in total resources assigned to them. Top bidders
should receive a larger percentage of the total resources
when advertisers’ price elasticity of demand increases in the
amount of resources allocated. The converse is true when
advertisers’ price elasticity decreases.

We also show that the advertising provider should use a
less steep share structure when imposing an optimally set
minimum bid than when not imposing a minimum bid.
Together, these results provide useful guidelines on how to
manage share structures to fit specific market conditions.

We organize the rest of the article as follows: In the next
section, we discuss the related literature. Then, we set forth
our model and derive general results on optimal share struc-
tures. Following this, we discuss how the optimal share
structure is affected by the underlying supply and demand
factors. We then extend our analysis to a case with mini-
mum bids. Finally, we summarize our conclusions, offer
implications of our results, and suggest possibilities for fur-
ther research.
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Related Literature
Marketing researchers have long recognized the importance
of online advertising (Manchanda et al. 2006) and search
(Bradlow and Schmittlein 2000). For example, Manchanda
and colleagues (2006) empirically study the effect of banner
advertising on purchasing patterns on the Internet. Wilbur
and Zhu (2009) assess the problem of click fraud in pay-
per-click search advertising and discuss how search
engines’ revenues are affected by such fraud. In addition,
much research has been done on other types of Internet-
based auctions, such as eBay auctions (Sinha and Greenleaf
2000), name-your-own-price auctions (Spann and Tellis
2006), and online reverse auctions (Jap 2007). However,
keyword auctions differ from these types of auctions
because in the latter, bidders often have unit demand for
indivisible goods.

This article is most closely related to two literature
streams. First, it is related to the stream of research on key-
word auction designs. Prior research has examined online
advertising auctions from several other perspectives. A few
authors (Lahaie 2006; Liu and Chen 2006) have studied the
unique weighted ranking rules that advertising providers
use—that is, ranking advertisers by the product of their 
pay-per-click bids and their historical click-through rates
(defined as the ratio of the number of clicks to the number
of impressions). They find that such weighted ranking rules
achieve efficiency in a unit price auction setting. Edelman,
Ostrovsky, and Schwarz (2007) refer to keyword auctions
as generalized second-price (GSP) auctions because an
advertiser does not pay its own pay-per-click bid but rather
the next highest one. Both Edelman, Ostrovsky, and
Schwarz (2007) and Varian (2007) show that in GSP auc-
tions, truthful bidding is not an equilibrium. Edelman,
Ostrovsky, and Schwarz show that a GSP auction admits a
set of “locally envy-free” equilibria that generate as least as
much revenue as the Vickery–Clarke–Grove mechanism.
Borgers and colleagues (2007) study GSP auctions under a
more general specification and show that GSP auctions
have multiple equilibria and that the efficient equilibrium
that both Edelman, Ostrovsky, and Schwarz and Varian
study may not be justified using simple equilibrium refine-
ment. Both Varian (2007) and Borgers and colleagues
(2007) also empirically investigate equilibrium bidding
using early keyword auction data, but they reach different
conclusions on the efficiency of these auctions. All these
studies treat share structures as exogenously given. The cur-
rent research complements these studies by examining
advertising providers’ share structure decisions.

Second, our research problem is related to the second
stream of literature on the prize-allocation problem in con-
tests. Kalra and Shi (2001) study prize allocation among
salespeople and find that more prizes should be given as
salespeople become more risk averse. Glazer and Hassin
(1988) model contests as “all-pay” auctions or auctions in
which bidders forfeit their bids whether they win or not.
They find that winner-take-all is optimal when contestants’
disutility is linear in their effort and skill is uniformly dis-
tributed. Moldovanu and Sela (2001, 2006) also show that
winner-take-all is optimal as long as the disutility function
is linear. Liu, Geng, and Whinston (2007) study prize allo-

cation in promotional contests when the contest designer
maximizes contestants’ efforts rather than their outputs.
Although prizes are allocated in a manner similar to the
way shares are allocated, contests with convex disutility are
structurally different from share auctions with concave val-
uation. In contests, the convexity of the disutility function
affects contestants’ preference for different prize structures
indirectly through varying the costs of securing different-
ranked prizes, whereas in share auctions, the concavity of
the valuation function directly affects advertisers’ prefer-
ence for different share structures. Such a fundamental dis-
tinction enables us to characterize the optimal share struc-
ture for a more general n-share setting and to uncover the
relationship between plateaus in the optimal share struc-
tures and the underlying valuation distribution. Moreover,
we offer several new insights, including how advertisers’
valuation distribution and total resources available affect
optimal share structures.

Finally, this research also contributes to the literature on
pricing capacity–constrained services (Rust and Chung
2006). Because of the perishable and capacity-constrained
nature of advertising resources, they are similar to other
capacity-constrained services, such as airline seats and
hotel rooms (Desiraju and Shugan 1999), broadcast spots
(Lodish 1980), and access services (Essegaier, Gupta, and
Zhang 2002). However, prior literature on capacity-
constrained services has focused exclusively on the posted
prices rather than on auctions.

Research Model

Share Structure

A risk-neutral advertising provider has an exogenous
amount of advertising resources, with a normalized size 1.
There are n risk-neutral advertisers, indexed by i = 1, 2, …,
n. The advertising provider prepackages total resources in
as many as n shares, ranked from large to small. We use j to
index shares. We denote sj as the size of the jth share. We
term the vector of share sizes, s = (s1, s2, …, sn), as a share
structure. Share structure s is feasible if it satisfies the fol-
lowing two conditions:

The first condition requires shares to be ordered in a non-
increasing way. The second condition requires the sum of
shares not to exceed available resources. Figure 1 shows an
example of a feasible share structure.

As we discussed previously, we consider advertising
resources the total exposure generated by all available slots
for a keyword phrase. Each share is part of the total avail-
able exposure. A slot/position auction (Lahaie 2006; Varian
2007) can be viewed as a special case of our model in
which the first share provides the exposure generated by the
first slot, the second share provides the exposure generated
by the second slot, and so on. Thus, our model allows for a
more flexible distribution of the total available exposure
among bidders of different ranks.
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FIGURE 1
An Example of a Share Structure
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Advertisers’ Valuation

We assume that advertiser i’s valuation of a share is a func-
tion of a valuation factor (or the advertiser’s type) vi and the
size of the share. Specifically, advertiser i’s valuation for
the jth share takes the following form:

where Q(0) = 0 and Q′(·) > 0 (i.e., the valuation increases in
the share size). Type v captures the difference in advertis-
ers’ valuation of resources. The valuation function Q(·) cap-
tures how advertisers’ valuation changes in share sizes.

We assume that each advertiser’s type is drawn from a
common distribution F(v), v ∈ [v, v�]. Each advertiser’s type
is private information, but the distribution F(v) is common
knowledge. We assume that F(v) is twice differentiable, and
its density function, f(v), is positive everywhere on [v, v�]. In
the keyword advertising setting, advertisers have different
valuations for different reasons. First, all else being equal,
users may click on one advertisement more frequently than
on another, perhaps because of brand effects or simply
because the former is more relevant. Second, even when
users tend to click on two advertisements equally, advertise-
ments may differ in their power to generate follow-up activ-
ities, such as purchasing or signing up.

Auction Format

The advertising provider uses a unit price auction to allo-
cate all shares simultaneously. In particular, the advertising
provider invites advertisers to bid on their willingness to
pay per unit of resource, or the unit prices. The advertising
provider ranks all bidders according to their unit prices and
assigns the first share to the highest bidder, the second share
to the second-highest bidder, and so on. We assume that
advertisers pay for their assigned shares at the next highest
prices. Such an assumption is supported by the prevailing
practice among the leading online advertising providers.

( ) ( , ) ( ),2 u v s v Q si j i j=

4Indeed, our model also applies to pay-per-action advertising
(i.e., advertisers pay only when an online user undertakes a certain
action, such as purchase or registration, after seeing the advertise-
ment), as long as advertising providers rank advertisers by the
product of their pay-per-action and action-to-impression rates
(corresponds to click-through rates in pay-per-click advertising).

For example, Google uses a program called AdWords Dis-
counter, which automatically reduces an advertiser’s bid to
the lowest possible price to keep its rank in the auctions.
Yahoo has a similar policy.

The assumption that advertisers are ranked by their will-
ingness to pay per unit of resource is consistent with actual
auction formats used in keyword auctions. One popular auc-
tion format is pay-per-impression auctions, in which adver-
tisers bid and are ranked by their willingness to pay per
impression. For example, Google uses this auction format
for contextual advertisements in its advertising network.
Our model assumption is consistent with this format.
Another popular auction format is weighted pay-per-click
auctions (Liu, Chen, and Whinston 2009), in which adver-
tisers bid on their willingness to pay per click but are
ranked by the product of their willingness to pay per click
and historical click-through rates. Google uses this format
for its search-based advertising (sponsored search). Yahoo
adopted a similar format in early 2007. If an advertiser’s
historical click-through rate is an unbiased estimator for the
advertiser’s future click-through rates, this approach essen-
tially ranks advertisers by their expected willingness to pay
per impression. Thus, our model assumption corresponds to
this second format as well.4

Advertisers’ Payoff

Each advertiser’s expected payoff is the expected valuation
less the expected payment to the advertising provider. In
particular, if we denote pj(b) as the probability of winning
the jth share by placing a bid of unit price b and if (b) is
the next highest bid, the expected payoff of an advertiser of
type v is as follows:

Advertising Provider’s Revenue

The advertising provider’s revenue is the sum of payments
from all advertisers. Because the advertising provider does
not know advertisers’ types or their bids ex ante, the adver-
tising provider’s expected revenue is the expected payment
from all advertisers:

Game Timeline

The game proceeds as follows: The advertising provider
announces a share structure (s1, s2, …, sn). All advertisers
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privately learn their respective types and compete for shares
by bidding their unit prices. The advertising provider then
allocates the shares according to the ranking of the bids. An
advertiser’s problem is to maximize, for any announced
share structure, the expected payoff (Equation 3) by choos-
ing a unit price b. The advertising provider’s problem is to
maximize the expected revenue (Equation 4) by choosing a
feasible share structure. The way to design the share struc-
ture from the advertising provider’s perspective is the focus
of this article.

Given advertisers’ valuation (Equation 2), we can also
define advertisers’ price elasticity. The price elasticity of
advertisers’ demand is the percentage of change in advertis-
ers’ demand resulting from a 1% change in price per unit of
resource. Note that given price e, an advertiser should
choose demand d to maximize the total payoff [vQ(d) – (e ×
d)] in a fixed-price setting. This enables us to calculate the
advertiser’s price elasticity of demand as follows:

The shape of Q(·) determines advertisers’ price elasticity.
Specifically, an advertiser is perfectly price elastic if Q(·) is
linear, and the advertiser’s price elasticity decreases as Q(·)
becomes more concave.

General Results on the Optimal
Share Structure

In this section, we study the advertising provider’s problem
of choosing an optimal share structure. We assume that
there is no minimum bid to focus on the impact of underly-
ing supply and demand factors (subsequently, we relax this
assumption). In what follows, we first derive some basic
concepts and results under a simple linear valuation setting.
We then use these concepts and results to examine the opti-
mal share structures under more general valuation
functions.

Equilibrium Revenue

Because we focus on the advertising provider’s share struc-
ture problem, advertisers’ equilibrium bidding function is
not of particular concern here. Instead, we focus on the
advertising provider’s expected revenue. Using methods
outlined in the auction literature (e.g., Klemperer 1999), we
can derive the advertising provider’s expected revenue π as
the sum of expected payments from all advertisers (for
details of this derivation, see the Web Appendix at http://
www.marketingpower.com/jmjuly09):

where

is the equilibrium probability for an advertiser of type v to
win the jth share.

( ) ( ) ( ) ( )7 11 1
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5Both Bulow and Roberts (1989) and Klemperer (1999) use the
term “marginal revenue” under a single-object auction setting.
Marginal revenue generated by an advertiser is different from the
actual revenue generated by the same advertiser because marginal
revenue also accounts for the impact of this advertiser’s participa-
tion on other advertisers.

We further denote J(v) ≡ v – [1 – F(v)]/f(v) as the mar-
ginal revenue of type v.5 The term Q(sj)J(v) in Equation 6
represents a type-v advertiser’s revenue contribution to the
advertising provider when the advertiser is assigned to the
jth share. The revenue contribution is less than the adver-
tiser’s valuation of the share, Q(sj)v, except when v = v�. The
difference reflects the advertiser’s rent due to information
asymmetry between advertisers and the advertising
provider.

We further denote

and use the term αj to refer to the return factor for the jth
share. Note that Pj(v) is the equilibrium probability of win-
ning the jth share, so the return factor is the expected mar-
ginal revenue generated by winners of the jth share. Return
factors reflect the difference in return rates for the same
amount of resources allocated to different shares. Using this
definition, we can rewrite the expected revenue (Equation
6) as follows:

The advertising provider’s problem is to maximize
Equation 9 subject to feasibility conditions in Equation 1.
Intuitively, a share with a high return factor yields higher
revenue for the advertising provider than a same-sized share
with a low return factor. This implies that when possible,
the advertising provider will allocate resources to shares
with high return factors.

The relative magnitude of the return factors holds spe-
cial importance in the optimal share structure problem. In
general, the return factor of a share is determined by the
distribution of types and the number of advertisers, but it is
independent of the share structure s or the valuation func-
tion Q(·). Lemma 1 provides some insight into relative sizes
of return factors.

A distribution satisfies the monotone-hazard-rate
(MHR) condition if its hazard rate, f(v)/[1 – F(v)], monoto-
nically increases within its support. The MHR property is
satisfied by most single-peaked distributions, such as uni-
form, normal, and logistic.

Lemma 1: (a) α1 > αj for all j > 1, and α1 > 0. (b) Under the
MHR condition, α1 > α2 > … > αn.

(We defer proofs of all propositions to the Appendix and
proofs of all lemmas to the Web Appendix [http://www.
marketingpower.com/jmjuly09].)

Lemma 1a shows that the first share is superior to any
other share in terms of return factors, regardless of the num-
ber of advertisers or the type distribution. The intuition for
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this result is as follows: The marginal revenue of the high
types (close to v�) is the highest, regardless of the type dis-
tribution. Meanwhile, advertisers with the highest types are
more likely to win the first share. Therefore, the first share
has the advantage of securing the advertisers with the high-
est marginal revenue, thus generating the highest return.
Recall that the return factor of the jth share is the expected
marginal revenue of the winner of the jth share. This
implies that the return factor of the first share is the highest.

The intuition for Lemma 1b is as follows: In general, a
high-type advertiser is more likely to win a high-ranked
share than a low-ranked share, and the reverse is true for a
low-type advertiser. The MHR condition, which implies
that a high-type advertiser has higher marginal revenue than
a low-type advertiser, reinforces the advantage of offering a
high-ranked share (in terms of the revenue generated), thus
ensuring a decreasing order among return factors.

Lemma 1 has immediate implications for the linear val-
uation case. With linear valuation Q(s) = s, an advertiser’s
valuation of a share becomes u(v, s) = vs. Thus, v can be
interpreted as advertisers’ marginal valuation. The problem
with choosing an optimal share structure (Equation 9)
becomes the following constrained linear program:

Because α1 is the largest among all the return factors by
Lemma 1, the advertising provider should allocate all the
resources to the first share, leading to a winner-take-all
share structure. Under the MHR condition, return factors
decrease. The winner-take-all result can be strengthened to
a greedy allocation—that is, to fill up the jth share before
the (j + 1)th share. The strengthened result is useful when,
for example, the first share must be less than 1. The follow-
ing proposition summarizes this intuition:

P1: If advertisers’ valuation is linear in share size, (a) it is opti-
mal to provide one grand share of size 1 (whenever possi-
ble), and (b) when the MHR condition holds, the advertis-
ing provider should allocate the resources in a greedy
way—that is, to fill up the jth share before moving on to
the (j + 1)th share.

Recall that linear valuation corresponds to the setting in
which advertisers’ demand is perfectly elastic. This setting
may hold approximately when the supply of advertising
resources is small compared with the demand, given that
advertisers’ marginal valuation declines beyond a certain
point. P1 suggests that when advertisers’ valuation is per-
fectly elastic, it is optimal to use a winner-take-all share
structure.

Our analysis shows that a high-ranked share promotes
higher bids from high-type advertisers than a low-ranked
share, provided that the two shares have the same size. The
opposite is true for low-type advertisers. Thus, in general,
the optimal choice of share structure involves trading off
between best motivating the high-type advertisers and best
motivating the low-type ones. This might depend on how
advertisers’ types are distributed. Surprisingly, P1 shows
that it is always optimal to best motivate the high-type ones,

( ) max
, , ...,

10
1 2

1
s s s

j

n

j j
n

s , subject to E

=
∑α qquation 1.

regardless of the distribution of advertiser types or the num-
ber of advertisers.

It is also worth noting that when the MHR condition is
violated, return factors may not follow a descending order;
therefore, the greedy allocation that P1b specifies may not
be optimal, as the following example proves:

Example 1: Let F(v) = (v – 1)1/4, v ∈ [1, 2], and n = 3. Assume
that share sizes cannot exceed .5. Calculation
shows that the return factors are 1.14, .91, and .94,
respectively. A greedy allocation, (.5, .5, 0), gen-
erates an expected revenue of 1.029, whereas the
optimal share structure, (.5, .25, .25), generates an
expected revenue of 1.036.

Concave Valuation

P1 suggests that the advertising provider should allocate all
the resources to the first share in the case of linear valua-
tion. This would require the top bidder to appear in all
available advertising slots for a particular keyword. How-
ever, this is seldom the case. One explanation could be that
advertisers’ valuation is nonlinear in share sizes. We address
the nonlinear valuation case in this section.

When Q(·) is convex, advertisers’ marginal valuation,
vQ′(s), increases with the share size. Thus, the advertising
provider has a stronger incentive to create a larger share
than in the linear valuation case. Consequently, the results
in P1 continue to hold. Thus, we focus on the case of
concave Q(·).

In keyword advertising, Q(·) might be concave for at
lease two reasons. First, consumers’ attention devoted to an
advertisement may be less than twice as much if we double
the amount of time it is shown (Lilien, Kotler, and Moorthy
1992, p. 267). Second, the unit cost to fulfill consumers’
requests may rise because of limited production/service
capacity. Thus, advertisers’ marginal valuation for exposure
may decrease as the total exposures increase. For example,
smaller e-commerce Web sites begin to lose some cus-
tomers because of congestion problems as the traffic to the
sites becomes very high.

In the case of concave valuation, advertisers’ unit valua-
tion decreases with share size and so does the unit price
they are willing to pay. As a result, the advertising provider
has additional incentive to offer advertising resources in
smaller shares. The following example illustrates an opti-
mal share structure with multiple shares. The optimal share
structure consists of several groups of same-sized shares.
We call each group a plateau. A plateau is nontrivial if it
consists of more than one share.

Example 2: Let F(v) = (v – 1)1/4, v ∈ [1, 2], n = 3, and Q(s) =
Under this specification, the optimal share

structure is (.4310, .2845, .2845). Thus, the first
plateau consists of the first share, and the second
plateau consists of the second and third shares.

When do nontrivial plateaus occur in optimal share
structures? What determines the boundaries of plateaus
(i.e., the first and the last shares of the plateaus)? Lemma 2
shows that plateau boundaries are intimately related to
return factors. We denote the rank of the last share of the
kth plateau as jk:

s .
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6If there are multiple maximums, we define jk as the largest one.

Lemma 2: Under an arbitrary concave function Q(·), the rank
of the last share of the kth plateau in the optimal
share structure is recursively defined by (let j0 = 0)6

In other words, the advertising provider must
assign equal resources to (jk + 1)th through
(jk + 1)th shares (defined in Equation 11) in the
optimal share structure.

Equation 11 states that the last share of the kth plateau
is chosen to maximize the average return factor of shares
within that plateau. If the return factor of the first share of a
plateau is higher than that of any lower-ranked share, the
plateau should consist of only that share. Thus, if return fac-
tors of shares are strictly decreasing, as in the case of a
MHR type distribution (see Lemma 1b), each plateau
should consist of exactly one share. In other words, a low-
ranked share should be assigned strictly fewer resources
than a high-ranked share. Conversely, when return factors
do not decrease in share ranks, which is likely to happen
when the type distribution is not single peaked, plateaus
may arise in the optimal share structure. In other words, the
advertising provider may find it optimal to assign equal
resources to multiple shares of different ranks.

We denote the average return factor of the kth plateau as
follows:

Because the last share of a plateau is chosen to maximize
the average return factor of that plateau, the average return
factors (α�k’s) must strictly decrease, and the average return
factor of the first l shares within a plateau is no greater than
that of the remaining shares in that plateau.

The rationale for Lemma 2 is as follows: Suppose that
instead of assigning equal resources to all shares within a
plateau, the advertising provider assigns more resources to
the lth share than to the (l + 1)th share in the plateau. The
advertising provider can always shift a small amount of
resources from each of the first l shares and spread them
equally to the remaining shares in the plateau. This opera-
tion is profitable because our definition of jk’s guarantees
that the average return factor of the first l shares in a plateau
will be lower than that of the remaining ones in the same
plateau. This process can continue until all shares within the
plateau have equal sizes.

Lemma 2 also implies that the first plateau always con-
sists of only the first share. This is because the return factor
of the first share is higher than that of any other share
(Lemma 1a).

Example 3: Continue with Example 2. Calculation shows that
α1 = 1.14, α2 = .91, and α3 = .94. By definition of
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jk’s (Equation 11), j1 = 1, and j2 = 3 (because α2 <
(α2 + α3)/2). Thus, the first plateau consists of the
first share, and the second plateau consists of the
second and third shares, confirming Example 2.

On the basis of the result in Lemma 2, we characterize
the optimal share structure in the following proposition:

P2: Given an arbitrary concave function Q(·), the optimal
share structure is given by

where z1 > z2 > … > zk* > 0, and the number of positive
plateaus (k*) and their sizes (z1, …, zk*) are determined by

and The jk’s and α��k’s in Equa-
tions 13 and 14 are defined in Equations 11 and 12,
respectively.

P2 builds on Lemma 2 and illustrates how many
resources should be assigned to each plateau. Equation 14
shows that the return of marginal resources at each plateau
(α�kQ′(zk)) must be equal. This is because, otherwise, the
advertising provider can profitably shift the resources from
a plateau with a low marginal return to ones with high mar-
ginal returns.

As Lemma 2 shows, the boundaries of plateaus are
determined only by the return factors (and, thus, by the type
distribution and the number of advertisers). In contrast, the
number of positive plateaus and the share sizes for plateaus
are jointly determined by the return factors and the shape of
the valuation function (P2). The characterization of the opti-
mal share structure in P2 holds for general concave valua-
tions and type distributions.

Under the MHR condition, the return factors monotoni-
cally decrease, and therefore each plateau consists of a
single share (Lemma 2). Thus, we have the following
corollary:

Corollary 1: If the MHR condition holds, the optimal share
structure s*, together with the optimal number of
positive shares, k*, is determined by

and Furthermore, s1 > s2 > … >
sk* > 0.

These results suggest the following general procedure
for determining the optimal allocation of advertising
resources for winners of different ranks: First, the advertis-
ing provider should organize adjacent shares into groups,
beginning with the first share, according to the principle of
maximizing the average return factor within the group
(Lemma 2). This process may result in several groups of
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FIGURE 2
Steepness Order of Share Structures
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shares, or plateaus, with strictly decreasing average return
factors. Second, the advertising provider allocates each
marginal resource to the plateau that yields the highest mar-
ginal return at the moment, until all advertising resources
are allocated. This may result in total resources being
spread across multiple plateaus because when advertisers’
marginal valuation for resources decreases, a plateau with a
higher average return factor but more resources can gener-
ate lower marginal returns than a plateau with a lower
return factor but fewer resources. Finally, the advertising
resources allocated to each plateau are split equally among
shares in that plateau. If the distribution of advertisers’ val-
uation is regular (i.e., type distribution satisfies the MHR
condition), each plateau consists of exactly one share
(Corollary 1). So the advertising provider can skip Step 1
and begin at Step 2.

Optimal Share Structures and
Underlying Supply and Demand

Factors
In this section, we carry out a series of comparative-static
analyses on the optimal share structure. These analyses
serve two purposes. First, we generate more managerial
guidelines for advertising networks and publishers to
choose different share structures for different market set-
tings. Second, by isolating the effects of underlying factors,
we can gain more insights into the connection between the
optimal share structure and the various underlying supply
and demand factors. We examine several factors, including
the shape of the advertisers’ valuation function Q(·) the
distribution of type v, and the total resources available. To
measure the changes in share structures, we propose order-
ing share structures by their “steepness,” which we define
as follows:

Definition 1 (steepness order): Let s = (s1, …, sn) and ss = (s1,
…, sn) be two feasible share structures with 
Σn

j = 1sj = Σn
j = 1sj. We define ss as less steep (or flat-

ter) than s if there is c, c ∈ {1, 2, …, n}, such that

We define ss as strictly less steep (or strictly flat-
ter) than s if c > 1 (if c = 1, sj ≥ sj for any j, and
two share structures must be identical because the
total allocated resources are the same).

Graphically, Equation 16 dictates that the line connect-
ing the less steep share structure (ss) crosses the line con-
necting the steeper share structure (s) at most once from
below (for an example, see Figure 2). The less steep share
structure, which has smaller high-ranked shares and larger
low-ranked shares, is represented by a less steep line (this is
why we call our measure a “steepness order”). A strict
steepness order has the following properties: First, the num-
ber of (positive) shares in a flatter share structure is no less
than the number of (positive) shares in a steeper one. Other-
wise, some (zero-sized) low-ranked shares in the flatter
share structure will be smaller than corresponding ones in
the steeper share structure, contradicting our definition of
being less steep. Second, a flatter share structure always has
a smaller first share. Otherwise, the steepness order implies

( ) ˆ ˆ .16 s s j c s s j cj j j j< ∀ < ≥ ∀ ≥, and ,

that the remaining shares in the flatter share structure would
be at least as large as those in a steeper one, and therefore
total resources in the flatter share structure are more than in
the steeper one (unless they are identical), which is unlikely
because of the total resource constraint. Third, the steepest
share structure consists of one grand share (the winner-take-
all), and the least steep one consists of n equal shares.

In practice, the steepness order can be measured by the
widely used Herfindahl index, which is defined as the sum
of squares of shares. We can verify that the steeper the share
structure, the higher is the Herfindahl index, but the con-
verse is not necessarily true. For example, (.6, .2, .2) has a
higher Herfindahl index than (.5, .35, .15), but the former is
neither steeper nor flatter.

Concavity of the Valuation Function

We now consider the impact of the concavity of the valua-
tion function on the optimal share structure. As we pointed
out, the concavity of the valuation function can also be
interpreted as the price elasticity of advertisers’ demand.
The literature on capacity-constrained services has shown
that consumers’ price elasticity plays an important role in
the firm’s optimal pricing policy (Desiraju and Shugan
1999). Here, we show that price elasticity also plays an
important role in determining the optimal share structure.
We begin with an example:

Example 4: Let v be uniformly distributed on [1, 2], n = 3, and
Q(sj) = sj

γ. Figure 3 shows the optimal sizes of the
first, the second, and the third shares as functions
of γ. Note that the smaller the γ, the more concave
is the valuation function Q(·), and the less elastic
is the advertisers’ demand.

Example 4 shows that as advertisers’ price elasticity
decreases, the optimal share structure moves away from
winner-take-all toward a more egalitarian share structure.
Specifically, this example shows a gradual shift of resources
away from the first share toward the second and third
shares. Subsequently, we generalize this example to a
broader setting.
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FIGURE 3
Optimal Share Structure as a Function of γγ,

Q(s) = sγγ
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We measure concavity by the commonly used concave
transformation approach (Mas-Colell, Whinston, and Green
1995). Formally, let Q(·) and Q(·) be strictly increasing and
concave functions. We say that Q(·) is more concave than
Q(·) if there is an increasing concave function ψ(·) such that
Q(x) = ψ(Q(x)) for every x > 0.

P3: The optimal share structure becomes less steep as the con-
cavity of Q(·) increases. Furthermore, if the optimal share
structure under Q(·) is not winner-take-all, it becomes
strictly less steep as the concavity of Q(·) increases.

According to P3, as the valuation function becomes
more concave, the optimal share structure moves away from
winner-take-all toward n equal shares. Intuitively, as the
valuation function becomes more concave, the advertising
provider prefers many small shares to few large shares
because advertisers value the former more. The strength of
this proposition lies in the notion that the redistribution of
resources occurs according to the steepness order rather
than other ways. For example, if the current optimal share
structure is (.5, .25, .25), we can rule out (.45, .35, .2) as a
new optimal share structure if the valuation function
becomes more concave. This proposition predicts that as the
concavity increases, the number of shares weakly increases,
the first share is usually smaller, and the low-ranked shares
will not become smaller. Note that the result in P3 holds
regardless of the type distribution.

To our knowledge, this is the first study to establish the
relationship between the concavity of advertisers’ valuation
(or the price elasticity of their demands) and the steepness
of the optimal share structure. Moldovanu and Sela (2001)
show that in an all-pay-auction model of contests, it may be
optimal to award multiple prizes when contestants’ disutil-
ity functions are convex. We establish a stronger bond
between concavity of the valuation function and share
structure for our setting; namely, not only can multiple
shares become optimal under a concave valuation, but share

7This result can be extended to share structures with different
plateau boundaries. To do so, we can “iron out” the peaks in the
return factors in each share structure by defining a normalized
return factor vector ββ ≡ (β1, …, βn) such that βjk – 1 + 1 = … = βjk =

for each k. The normalized return factor vector retains the
original plateau boundaries and average return factors and is non-
increasing. The optimal share structure under the normalized
return factor vector is the same as under the original one because,
according to P2, all that matters to the optimal share structure
problem is the average return factors. We can then compare share
structures based on normalized return factors using the following
result: ss is less steep than s if bj + 1/bj ≥ βj + 1/ βj, for any j such that
sj + 1 > 0 (the proof is similar to the proof of Lemma 3).

αk,

structures can also become less steep as the valuation func-
tion becomes more concave.

The implication of P3 is highly actionable. When adver-
tisers’ price elasticity is high or low, advertising providers
can decide whether to provide steep share structures or flat
ones. To achieve steep share structures, advertising
providers can assign the top bidders to the best slots at all
times and across all Web sites. They can also use premium
displays to enhance the fraction of exposure allocated to
those advertisers. To achieve flat share structures, advertis-
ing providers can randomize the allocation of advertising
slots among winners of different ranks to ensure that they
receive relatively equal shares of the total exposure.

Advertising providers can estimate the advertisers’ price
elasticity from their bidding history. They can also conduct
experiments to observe how advertisers’ willingness to pay
changes with the expected volume they receive. An advan-
tage of online advertising is that advertising providers can
conduct such experiments at a relatively low cost because
perturbations of their systems can be done electronically
and take effect instantly.

Type Distribution

The distribution of types varies across different keywords.
Some keywords are more expensive than others. For exam-
ple, advertisers for “mortgage” sometimes bid as high as
$40 per thousand impressions, whereas advertisers for
“CD” usually bid less than $1 per thousand impressions.
The distribution of willingness to pay per impression may
also differ from one keyword to another. For example, key-
words with broad appeal may attract advertisers from dif-
ferent industries with wildly different willingness to pay,
whereas highly specific keywords may attract advertisers of
a narrowly defined industry with relatively homogeneous
willingness to pay. The question is how the advertising
providers should tailor the share structure offerings for dif-
ferent type distributions.

The type distribution affects the optimal share structure
through the return factors. To study the effect of the type
distribution, we must first understand how the return factors
affect steepness of the optimal share structure. Lemma 3
associates the steepness with return factors:

Lemma 3: Let Q(·) be an arbitrary concave function and s and
ss be the optimal share structures under return factor
vectors αα = (α1, …, αn) and α̂α = (α̂1, ..., α̂n), respec-
tively. If we assume that the plateau boundaries
under αα and α̂α are the same,7 ss is less steep than s if



134 / Journal of Marketing, July 2009

8For a formal representation of this condition, see the Appendix.

(17) for any k such that zk + 1 > 0,

and ss is strictly less steep than s if at least one strict
inequality holds in Equation 17.

Lemma 3 shows that if is closer to 1 (the aver-
age return factors of different plateaus are more equal), the
optimal share structure will be flatter. Intuitively, the opti-
mal condition requires equal marginal revenue across
shares. When average return factors of different plateaus
become more equal, less variation in resources allocated to
shares across different plateaus is required to achieve equal
marginal revenue. Thus, the optimal share structure will be
flatter. Next, we examine how the type distribution affects
ratios of return factors.

The type distribution is “scaled” if each advertiser’s
type parameter is multiplied by a common factor. Advertis-
ers’ type distribution is “shifted” to the right if each adver-
tiser’s type parameter increases by a common factor. The
following proposition summarizes the impact of scaling,
shifting, and a change in the underlying type distribution,
termed “marginal-revenue-ratio compression”:

P4: We use αj and α̂j to denote the return factors under type
distributions F and F, respectively.

(a) (Scaling) When F is F scaled by a factor w (w > 0), the
return factors α̂j = wαj, and the optimal share structure
remains the same.

(b) (Shifting) When F is F shifted to the right by w (w >
0), the return factors α̂j = αj + w, and the optimal share
structure becomes less steep.

(c) (Marginal-revenue-ratio compression) We assume that
both type distributions are MHR and have positive
marginal revenues. When the ratio of marginal rev-
enues at any two percentiles y and x (y > x) under F is
smaller than that under F, ss is less steep than s.8

The intuition for P4a is as follows: When all advertisers’
valuation is scaled by factor w, their equilibrium bids are
scaled by the same factor, but their probabilities of winning
remain the same. As a result, all the return factors are scaled
by the same factor. Because what matters to the optimal
share structure are the relative sizes of return factors, the
optimal share structure should remain the same.

P4b suggests that shifting to the right causes a flatter
optimal share structure. Again, shifting does not change
advertisers’ winning probabilities, but it does cause all
advertisers to increase their bids. The increase in low-type
advertisers’ bids is more significant because their type v has
increased by a larger proportion. In turn, this reduces the
ratios between the return factors of high-ranked shares and
those of low-ranked shares because the low-ranked shares
are more likely to be assigned to low-type advertisers. As
the return factors for low-ranked shares increase relative to
those for high-ranked shares, the optimal share structure
should be less steep (Lemma 3).

P4c suggests that the optimal share structure should be
less steep if marginal revenue ratios between any two per-
centiles are compressed. This result highlights that what
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+ +≥1 1 matters is the ratios of marginal revenues at different per-
centiles rather than the absolute marginal revenues.

Returning to the questions we raised at the beginning of
the section, we can now report that the optimal share struc-
ture for expensive keywords may or may not be steeper than
that for less expensive ones. If the distribution of advertis-
ers’ valuation (corresponds approximately to the type distri-
bution) for more expensive keywords is simply a rescaling
of that for less expensive ones, advertising providers should
apply the same share structure for these keywords. For
example, if advertisers’ valuation factor for an expensive
keyword is uniformly distributed on [2, 4] and if their valu-
ation factor for a less expensive one is uniformly distributed
on [1, 2], advertising providers should use the same share
structure for these two keywords. In contrast, if advertisers’
valuation factor for the more expensive keyword is uni-
formly distributed on [4, 5], advertising providers should
use a flatter share structure for the more expensive key-
words. As P4c suggests, if the marginal revenue contribution
of advertisers at low percentiles closes in on that of adver-
tisers at high percentiles, advertising providers should use a
flatter share structure, and vice versa. In practice, advertis-
ing providers may learn advertisers’ marginal revenues by
observing the actual revenue generated per exposure.

Total Resources

So far, we have assumed that the total resource is fixed and
normalized to 1. In this subsection, we allow the total
resources to change and examine the impact on optimal
share structures.

The total resources available to advertisers change with
the number of searches conducted (in sponsored search) and
the number of page views (in contextual advertising). The
total resources may change over time for many reasons,
including a change in the popularity of the Web sites,
increased searches on particular keywords because of spe-
cial events, and new additions to the advertising networks.
For example, when Google signed a contract with AOL to
serve online advertisements on AOL.com, Google’s key-
word advertising resources surged. How should advertising
providers adjust their share structures according to the total
resources available?

Our characterization of the optimal share structures in
P1 and P2 still holds, except that total available resources
are no longer 1. Moreover, when total resource is the only
changing factor, the return factors are the same, and there-
fore the boundaries of plateaus should remain the same
(Lemma 2). Therefore, we can concentrate on how the total
resources are allocated among different plateaus. We
observe the following trend in the absolute share sizes, the
number of shares, and the relative share sizes in the optimal
structure:

P5: Under a concave Q(·), as the total resources increase, (a)
the size of each positive share increases and the number of
positive shares weakly increases, and (b) a high-ranked
share increases by a smaller (bigger or the same) percent-
age than a low-ranked one, if advertisers’ price elasticity
decreases (increases or remains constant) in the amount of
resources allocated to them.
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9For example, assume that there are two advertisers, α1 > α2 > 0
and α1 < 2α2 (to rule out the winner-take-all case). We can easily
verify that Q(s) = and Q(s) = ln(s + 1) correspond to a constant-
price-elasticity case and a decreasing-price-elasticity case, respec-
tively. In the former case, the optimality condition (Equation 15)
implies that Thus, the relative size of
the first share, s1

*/(s1
* + s2

*), is a constant [= α1
2/( α1

2 + α2
2)]. In the

latter case, the optimality condition (Equation 15) implies that
(s1

* + 1)/(s2
* + 1) = α1/α2. We can verify that the relative size of the

first share, s1
*/(s1

* + s2
*), decreases as the total resources increase.

− = −α α1 1 2 22 2/( ) /( ).* *s s

s

The intuition for P5a is as follows: As the amount of
total resources available increases, the marginal return of
resources should decrease because of the concavity of the
advertisers’ valuation. Because the return factor of each
share remains the same, the resource allocated to each share
must increase. Otherwise, the marginal return from each
share will be equal to or higher than previously, contradict-
ing the argument that the marginal return of resources
should decrease.

P5b suggests that whether some shares increase more in
proportion to others depends on how advertisers’ price elas-
ticity changes with the resources allocated to them. Intu-
itively, when advertisers have a decreasing price elasticity,
their demand becomes less elastic as shares become larger.
Thus, when the total resources increase, the advertising
provider should increase high-ranked shares by a smaller
percentage. Conversely, when advertisers have increasing
(constant) price elasticity, the advertising provider should
increase high-ranked shares by a larger (equal) percentage.9

To compare share structures with different amounts of
total resources, we can calculate relative share sizes by
dividing absolute share sizes by the total resources avail-
able. P5 effectively posits that as the total resources
increase, the optimal share structure with relative share
sizes becomes flatter (becomes steeper or remains constant)
if advertisers’ price elasticity decreases (increases or
remains constant) in the amount of resources allocated to
them. Thus, P5 reveals a connection between the steepness
of optimal share structures with relative share sizes and how
advertisers’ price elasticity changes with resources allocated
to them. Increasing the total resources does not change rela-
tive share sizes per se. Rather, it changes relative share sizes
only when an increase in the total resources alters advertis-
ers’ price elasticity on the margin.

The Case with Minimum Bids
In this section, we extend our model to the case in which
minimum bids are imposed. Online advertising providers
often use minimum bids in their advertising auctions. For
example, Google currently requires that advertisers bid at
least $.25 per thousand impressions in its contextual adver-
tising. Yahoo requires a minimum bid of $.10 for all key-
words. Some researchers have studied the role of minimum
bids in traditional online auction settings (Kamins, Dreze,
and Folkes 2004; Suter and Hardesty 2005). This literature
shows that minimum bids can increase sellers’ earnings in
online consumer-to-consumer auctions (Suter and Hardesty
2005). Here, we focus on how the introduction of minimum
bids affects the optimal share structure.

10Under reasonable conditions, v0
* is unique and is invariant to

the share structure. For example, under the MHR condition, the
marginal revenue function J(v) crosses zero from below at most
only once, and thus it is optimal to set the optimal marginal type to
the crossing point or to v, whichever is higher. Neither depends on
the share structure. When the MHR condition is not satisfied, J(v)
may cross zero multiple times, and the optimal marginal type is
one of the crossing points. But in many cases, the optimal mar-
ginal type is the same crossing point for different share structures.

Imposing a minimum bid prevents some low-type
advertisers from participating in the auction because bid-
ding higher than the minimum bid would result in negative
payoffs for them. We assume that the effect of a minimum
bid is such that any advertiser of a type higher than v0 par-
ticipates in the auctions and any advertiser of a type lower
than v0 does not. We call v0 the marginal type.

Using a similar approach outlined in the Web Appendix
(http://www.marketingpower.com/jmjuly09) for deriving
expected revenue without minimum bids, we can derive the
expected revenue under a given marginal type v0 as follows:

We assume that the advertising provider chooses the opti-
mal marginal type v0

* to maximize the total expected rev-
enue (for the derivation of v0

*, see the proof of P6), and v0
* is

invariant to the share structure.10 We also assume that v0
* >

v avoids the trivial case.
We redefine the return factors as follows:

Different from the no-minimum-bid case, the return factors
are now functions of the marginal type. We show in the Web
Appendix (in Lemma W1) that Lemma 1b carries over to
this case; that is, under the MHR condition, the return fac-
tors of different shares decrease (see http://www.marketing
power.com/jmjuly09). This is because excluding low-type
advertisers reinforces the advantages of high-ranked shares
in generating returns. It follows that P1b carries over as
well; that is, when the MHR condition holds and the valua-
tion is linear, the advertising provider should use a greedy
allocation among shares.

Given any marginal type, the characterizations of opti-
mal share structures in P2 and Corollary 1 continue to hold.
So do the comparative-static results on the concavity of val-
uation function (P3) and on total resources (P5). In addition,
the results on scaling and shifting of type distribution in P4
continue to hold as long as the marginal type is adjusted
accordingly.

We now examine the impact of minimum bids on opti-
mal share structures. Properly set minimum bids exclude
low-type advertisers with negative marginal revenues and
thus improve the return factors of all shares. However, the
improvements may differ across shares. Therefore, the opti-
mal share structure may change as a result of imposing min-
imum bids, as the following proposition suggests:
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P6: If the MHR condition holds, the optimal share structure
under the optimal minimum bid is flatter than under no
minimum bid.

Intuitively, minimum bids exclude low-type advertisers
who have negative marginal revenues and thus increase the
total expected revenue. If permitted in the auction, these
advertisers would more likely win low-ranked shares than
high-ranked ones. Therefore, excluding them results in rela-
tively larger improvements on the marginal returns of low-
ranked shares than on those of high-ranked ones. This
implies that resources should be shifted toward low-ranked
shares, and the optimal share structure should be flatter.

Conclusion
Auctions are crucial to the functioning of keyword advertis-
ing in which millions of different keywords are sold each
day. It is imperative to study how to best auction keywords
because keyword advertising also holds great promise for
other advertising markets that hope to replicate its success.
Existing research on keyword auctions has largely focused
on the ranking of advertisers (e.g., Weber and Zheng 2007)
and payment rules (e.g., Edelman, Ostrovsky, and Schwarz
2007), taking objects to be auctioned as given. Little
research has been conducted on the “resource-package”
issue that precedes auctions—that is, how to package and
recombine different advertising resources for each keyword
phrase before auctioning them to advertisers. We argue that
the resource-packaging issue has increasing importance as
more resources become available for auctioning. In this arti-
cle, we take a first step to study a share structure problem—
namely, of the total available resources, how large a share
should be set aside for the highest bidder, for the second-
highest bidder, and so on.

The share structure issue is important for advertising
networks and publishers. As we show, the optimal share
structures change with multiple underlying demand and
supply factors. Advertising providers may find it necessary
to actively adjust their share structures for several reasons.
First, the supply of advertising resources fluctuates as pub-
lishers join and leave advertising networks and as publish-
ers’ draw of online users rises and falls. Second, the demand
for advertising on each keyword phrase shifts constantly in
response to changes in underlying market trends. The
importance of the share structure issue will grow as the
demand for and supply of keyword advertising grow
stronger and become more dynamic.

We study the optimal share structure problem in a
framework in which an advertising provider offers the total
advertising resources in as many as n shares to n advertis-
ers. The advertising provider allocates all shares simultane-
ously using a unit price auction. Advertisers’ valuation for a
share is affected both by their private valuation factor (or
their “type”) and by the size of the share. Our model allows
advertisers’ valuation factor to follow a general distribution
and advertisers’ valuation to depend on the size of the share
by a general increasing function. Using this framework, we
characterize the optimal share structures and investigate
how they change with several underlying factors. Although
we examine this issue from the advertising providers’

revenue-maximization perspective, we believe that the share
structure issue also has important implications for advertis-
ers and the overall efficiency of the keyword advertising
market.

Although we use keyword auctions as our study setting,
our findings may have implications for other areas. This is
because keyword-auction-like mechanisms may be used for
other divisible goods with capacity constraints, such as net-
work bandwidth, grid-computing power, television broad-
casting rights, and digital billboard advertising. For exam-
ple, Google filed a proposal on May 21, 2007, with the
Federal Communications Commission calling on using
keyword-auction-like mechanisms to allocate radio spec-
trum to increase market efficiency.

Implications for Managers

Our characterization of the optimal share structure and of
the impact of the underlying demand and supply factors
generates several insights for advertising providers. First,
emerging from our analysis is a key determinant of optimal
share structures: advertisers’ price elasticity. We define
advertisers’ price elasticity as the percentage change in
advertisers’ demand for exposure resulting from a 1%
change in the price per unit of exposure. When the price
elasticity of advertisers’ demand for exposure is high,
advertising providers should use a steep share structure. In
other words, advertising providers should allocate most of
their resources to the top bidders. When the price elasticity
is low, advertising providers should use a relatively flat
share structure. This means that they should spread the total
advertising resources relatively evenly among advertisers of
different ranks. Advertising providers can estimate advertis-
ers’ price elasticities by examining the accumulated data 
on advertisers’ willingness to pay and their purchase vol-
umes or by conducting market research with a sample of
advertisers.

Second, another important determinant is the return fac-
tors of different shares. Return factors reflect the difference
in return for the same amount of resources allocated to dif-
ferent shares. When the return factor of a high-ranked share
is strictly higher than that of a lower-ranked share, which
holds true under uniform, normal, or exponential distribu-
tions, the optimal share structure should strictly decrease;
that is, a higher-ranked share should be strictly greater than
a lower-ranked share. Otherwise, the optimal share struc-
tures may have plateaus; that is, advertising providers may
allocate equal amounts for two or more shares. Whether
return factors decrease in shares is determined mainly by
the distribution of advertisers’ valuation.

Because the distribution of valuation determines return
factors, changes in the underlying valuation distribution
may lead to different optimal share structures. The rule of
thumb is that the ratio of return factors rather than absolute
values determines the optimal share structure. For example,
when the valuation distribution is scaled by a common fac-
tor, all return factors are also scaled by the same factor, and
the optimal share structure remains the same. When the val-
uation distribution shifts (to the right) by a common factor,
return factors for low-ranked shares increase by a higher
percentage than those for high-ranked shares, and the opti-
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mal share structure should be flatter. Therefore, it is not the
absolute difference in advertisers’ valuation for keywords
but rather the relative difference that affects the optimal
share structures. Advertising providers can estimate return
factors for different ranks by conducting controlled
experiments.

Third, advertising providers should react to changes in
total advertising resources according to advertisers’ price
elasticity. Specifically, advertising providers should allocate
proportionally fewer resources to high-ranked shares when
advertisers’ price elasticity decreases with the total expo-
sure they receive, and advertising providers should allocate
proportionally more to high-ranked shares when advertis-
ers’ price elasticity increases. Whether advertisers have
increasing (constant or decreasing) price elasticity may
depend on whether their underlying businesses have an
economy of scale (constant return or diseconomy of scale).
For example, businesses that do not scale well because of
their capacity constraints (i.e., suffer a diseconomy of scale)
tend to display decreasing price elasticity.

Finally, advertising providers should coordinate
between the minimum bids and the optimal share structures.
In general, advertising providers should use flatter share
structures when they use minimum bids. If advertising
providers decide to raise minimum bids, in general they
should offer flatter structures at the same time.

Implications for Further Research

This research highlights the issue of optimal share structure
as an important strategic dimension in keyword auctions.
Our research serves as a starting point for marketers to
understand novel keyword auctions. Further research is
needed in several directions. First, it would be worthwhile
to test our theoretical predictions empirically on the optimal
share structures for different settings. One way to test our
results directly would be to conduct laboratory or field
experiments. Another way would be to estimate the under-
lying supply and demand factors of existing keyword auc-
tions and use estimated parameters to project the gain in
auction revenues if optimal share structures were used.

Second, the problem of how resources should be pack-
aged for auctioning should be examined in broader and
more complex settings. As a first study of share structures,
we have kept our research model simple, focusing on fac-
tors that are most relevant to the share structure problem.
For example, we assumed that advertisers’ valuation for
exposures can be captured by a single valuation factor.
Thus, in our model, advertisers are “vertically” differenti-
ated. Cases may also exist in which advertisers are “hori-
zontally differentiated” (i.e., some advertisers may prefer
one resource, while others prefer another). It would be
worthwhile to examine how advertising providers should
package their resources in such a horizontally differentiated
setting.

Finally, why the current keyword auction format has
become the mechanism of choice is also a question for fur-
ther research. In traditional divisible goods auctions, such
as for electricity, pollution permits, and treasury notes
(Wang and Zender 2002; Wilson 1979), auctioneers ask
each buyer to report both a price and a desired share size

(quantity). Auctioneers subsequently solve the market-
clearance problem by using buyers’ price/share quotes,
whereas in keyword auctions, auctioneers “prepackage”
resources into shares, and advertisers simply bid on prices
only. Several reasons may be in favor of such a simple
mechanism. Keeping the auction mechanism easy to under-
stand and easy to participate in is essential to facilitate par-
ticipation of tens of thousands of advertisers, many of
which are small advertisers on the “long tail” and may oth-
erwise be excluded from online advertising. Reaching the
long tail of the advertising market is a key advantage of
online advertising providers. Moreover, winner determina-
tion in share auctions is straightforward, making it suitable
for real-time environments. However, it remains interesting
to compare the current auction format with potential alter-
natives, such as the conventional discriminatory-price and
uniform-price auctions used for treasury bonds (Wang and
Zender 2002; Wilson 1979).

Appendix: Proof of Propositions

Proof of P1 (Omitted)

Proof of P2

Suppose that we have m plateaus. In accordance with
Lemma 2, shares are equal in size within a plateau. We
denote nk ≡ jk – jk – 1 as the number of shares in plateau k
and zk as the size of a share in that plateau. Recall that α�k
decreases in k. Without loss of generality, we assume that
there are k0 ∈ {1, 2, …, m}, such that It
is never optimal to allocate resources to plateaus with non-
positive average return factors. Therefore, zk0 + 1 = ... = zm =
0 in the optimal share structure. Then, the optimal share
structure problem is as follows:

The Lagrangian function for Equation A1 is as follows
(note that 

where μ and λk are Lagrange multipliers. Thus, the Kuhn–
Tucker conditions are as follows (define λ0 ≡ 0):

If , in accordance with Equation A3, we
immediately have the following: α�1Q′(z1) = ... =
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k0), such that λ0 = … = λk = 0 and λk + 1 > 0. From Equation
A3,

Note that and zk + 1 = zk + 2 (because
λk + 1 > 0). Equation A4 requires that λk + 2 > λk + 1 > 0.
Using the similar logic repeatedly, we can get λk0

> ... >
λk + 2 > λk + 1 > 0, which implies that zk0 + 1 = zk0

= ... =
zk + 1 = 0 (because zk0 + 1 = 0). Substituting the λ sequence
into Equation A3, we get the following:

which implies that z1 > z2 > … > zk (because α�k decreases
and Q(·) is concave).

In addition, we have μ > 0 from Equation A3 when k =
1, which implies that that is, all the
resources are offered in the optimal share structure.

Proof of P3

We assume that Q(·) is more concave than Q(·); that is,
there is a concave function ψ(·) such that Q(·) = ψ(Q(·)).
Note that

which decreases in x. Therefore, for any x1 and x2 (x1 < x2),

We denote s and ss as the optimal share structures under Q(·)
and Q(·), respectively. To show that ss is less steep than s, it
is sufficient to show the following:

Note that s and ss have identical plateau boundaries by
Lemma 2. If j and j + 1 are located in the same plateau, sj =
sj + 1 and sj = sj + 1, and then sj + 1 ≥ sj + 1 holds trivially.
Otherwise, we assume that j and j + 1 are located in plateau
k and k + 1, respectively. We focus on the nontrivial case
sj + 1 > 0. In accordance with P2, we have α�kQ′(sj) ≥
α�k + 1Q′(sj + 1) and α�kQ′(sj) = α�k + 1Q′(sj + 1). Thus:

Combining Equation A8 with [Q′(sj + 1)/Q′(sj)] ≤ [Q′(sj + 1)/
Q′(sj)] (because of the concavity of Q(·)) and
[Q′(sj + 1)/Q′(sj)] < [Q′(sj + 1)/Q′(sj)] (because of Equation
A6), we have

which implies that sj + 1 > sj + 1.
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We now show that s1 < s1, if s2 > 0. If s1 ≥ s1, we know
from the preceding proof that s2 > s2 (note that s1 and s2 are
not in the same plateau by P2) and sj ≥ sj for j > 2, which
contradicts that 

Proof of P4

P4a. We denote F(wv) as the distribution function after
scaling. Clearly, F(wv) = F(v), and thus Pj(wv) = Pj(v). It is
easy to verify that f(wv) = f(v)/w and J(wv) = wJ(v). In
light of these relationships, we have the following:

where the third step is due to integration by substitution.
Given α̂j = wαj, the jk sequence remains the same as

before by definition, suggesting that the boundaries of the
plateaus will be the same. In addition, the optimal solution
to Equation 14 is invariant to a scaling of α̂j’s, suggesting
that the optimal share size for each plateau is also the same.

P4b. We denote F(v + w) as the distribution function
after shifting. Clearly, F(v + w) = F(v), and thus Pj(v + w) =
Pj(v). It is easy to verify that f(v + w) = f(v) and J(v + w) =
J(v) + w. In light of these relationships, we have the
following:

where the third step is due to integration by substitution and
the last step is because

Given α̂j = w + αj, the jk sequence remains the same as
before by definition, suggesting that the boundaries of the
plateaus will be the same. However, the ratio of average
return factors decreases because when w > 0,

Therefore, the optimal share structure becomes less steep
(Lemma 3).

P4c. We denote as the marginal revenue
contribution of an advertiser whose type is at the x per-
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centile of the population. We can formally represent the
condition in this result as follows:

Under the MHR condition, α�j sequence coincides with
αj sequence. So, in accordance with Lemma 3, a sufficient
condition for ss to be less steep than s is as follows:

We denote We can then
write the following:

Noting that α̂j + 1 > 0 and αj + 1 > 0 (from and
), we can rewrite Equation A12 as follows:

In line with the work of Athey (2002), this equation holds if
the following two conditions are satisfied:

Equation A14 simplifies to 
which holds when x > y. Rewriting Equation A13, we can
obtain Equation A11. If Equation A11 holds in strict
inequality, so does Equation A12, suggesting that ss is
strictly less steep than s.

Proof of P5

P5a. We offer proof by contradiction. Suppose that we
have m plateaus. Let ss denote the new optimal share struc-
ture after increasing the total resources. Note that α�j’s
remain the same. We assume that zl ≤ zl for some l ∈ {1, 2,
…, k*}. Then, it must be that zk ≤ zk for all k ∈ {1, 2, …,
m}. Otherwise, we assume that zj > zj ≥ 0 for some j ∈ {1,
2, …, m}. Because zj > 0 and zl > 0, in line with the first-
order condition (Equation 14), and

. Because we have
, which contradicts with zj > zj. How-

ever, if zk ≤ zk for all k, the available resources are not fully
allocated, which cannot be optimal. Thus, all shares with
positive sizes must increase with the total resources. As a
result, the number of positive shares weakly increases.

P5b. Let s and ss denote the share structure before and
after increasing the total resources, respectively. Consider
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zk + 1 > 0 (so that zk + 1 > 0). In accordance with the optimal
condition in Equation 14,

Noting that

we have the following:

We also denote the advertisers’ price elasticity of demand as
follows:

Note that

From our previous discussion, we know that zk + 1 <
zk + 1 and zk < zk. Suppose that zk ≤ zk + 1. Substituting
Equation A16 into both sides of Equation A15, we get the
following:

Then, it is straightforward that r′(·) > (<, =) 0 implies the
following:

If zk + 1 < zk, we can rewrite Equation A15 as follows:

By the same logic, r′(·) > (<, =) 0 implies the following:

Proof of P6

We begin by deriving v0
*. The first-order derivative of the

expected revenue (Equation 18) with respect to the marginal
type (v0) is The optimal mar-
ginal type is either an interior solution of J(v) = 0 or one of
the two corner solutions (v or v�). Note that v� cannot be opti-
mal, because the expected revenue decreases in the neigh-
borhood of v = v� (implied by J(v�) > 0). Under the MHR
condition, v0

* is either the solution to J(v0) = 0 or v,
whichever is higher.
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We prove P6 for any We denote hj(v) ≡
nPj(v)f(v). Note that αj(v0) = αj(v) – Accord-
ing to Lemma 3, a sufficient condition is that for any j such
that (where denotes the (j + 1)th share in the
optimal share structure under no minimum bid),

Following steps in the proof of Lemma 1b (see http://www.
marketingpower.com/jmjuly09), we can similarly show that

and first-order
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so we have the following:

where the last inequality is due to 0 < (v)dv <
(v)dv.

Given we have αj + 1(v) > 0. The result (Equa-
tion A17) follows from the notion that αj(v) > αj + 1(v) > 0
(Lemma 1) and that 0 > hj + 1(v)J(v)dv
(Equation A19).
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Erratum

The article “Understanding the Marketing Department’s Influence Within the Firm,”
which was published in the March 2009 issue of Journal of Marketing, provides a typical
definition of market orientation on page 19. The definition borrows heavily from Slater
and Narver (1995), and this erratum serves to acknowledge their contribution to the
definition.
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