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M otivated by the thriving market of online display advertising, we study a problem of allocating numerous types of
goods among many agents who have concave valuations (capturing risk aversion) and heterogeneous substitution

preferences across types of goods. The goal is both to provide a theory for optimal allocation of such goods, and to offer
a scalable algorithm to compute the optimal allocation and the associated price vectors. Drawing on the economic concept
of Pareto optimality, we develop an equilibrium pricing theory for heterogeneous substitutable goods that parallels the
pricing theory for financial assets. We then develop a fast algorithm called SIMS (standardization-and-indicator-matrix-
search). Extensive numerical simulations suggest that the SIMS algorithm is very scalable and is up to three magnitudes
faster than well-known alternative algorithms. Our theory and algorithm have important implications for the pricing and
scheduling of online display advertisement and beyond.
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1. Introduction

Online platforms and digital markets increasingly
match customers with massive number of heteroge-
neous goods and services. One prominent example is
online display advertising, which refers broadly to
text, graphical, video, or interactive advertisements
that mobile and Internet users encounter when they
browse non-search web pages or interact with appli-
cations. Due to increasingly sophisticated digital
tracking and predictive analytics,1 display advertisers
can now distinguish audiences at a granular level,
resulting in numerous audience types: one category,
for instance, could be young, male, high-income
adults who love video games and live in urban areas.
McAfee et al. (2010) report that advertiser campaigns
can have trillions of distinct audience categories to
choose from, just based on demographics, geographic
location, and interests-based “behavioral” attributes.
Naturally, with refined audience categories, advertis-
ers (or even campaigns) can demonstrate heteroge-
neous substitution preferences. For example, a video
game company may value audience categories that

include young male adults regardless of their loca-
tions, while a casino may value audience categories
that include adults in close vicinity regardless of their
gender or age. Thus, the casino would not mind sub-
stituting impressions from young adults with those
from older adults (perhaps for a lower cost). Such
heterogeneous substitution preferences also exist in
many other online matching markets that feature
numerous differentiated products or services, such as
vacation rental marketplace (e.g., Airbnb and Home-
Away) crowd-sourcing labor markets (e.g., Amazon
Mechanical Turk), and micro loans (e.g., LendingClub
and Prosper).
While there are gains from substituting one type of

goods with another, there are also preferences that
could limit substitution, such as preferences for
smooth consumption over time and for cross-sec-
tional diversification. For example, the video game
company may prefer that their ad impressions reach
all geographical locations; the casino may prefer that
impressions be evenly distributed throughout a
month. We argue that such preferences can be cap-
tured by risk aversion, a concept from the utility
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theory in economics. Indeed, risk aversion has been
used in insurance and finance industries since very
early time for similar purposes (e.g., Markowitz
1959).
To our knowledge, existing literature has not simul-

taneously modeled heterogeneous substitution pref-
erences and heterogeneous risk aversion in a unified
framework. Moreover, given the nature of the appli-
cations, it is critical that any new modeling approach
can handle massive number of distinct good types
computationally. To fill this gap, we formulate a new
allocation problem that is well-motivated from the
economic theory and captures heterogeneous substi-
tution and risk-aversion preferences. We then address
a formidable challenge of developing a new theory-
driven algorithm that can solve the proposed alloca-
tion problem at very large scales.
Our new allocation problem allows many types of

goods to be allocated among many agents, each with
a concave valuation (for modeling risk aversion) and
a unique substitution preference. The objective of the
problem is to maximize total realized values of all
agents, subject to resource availability constraints. We
call such a formulation a nonlinear allocation with
substitution (NAS). The solution to such problems
holds implications for online display advertising and
potentially many other online matching markets.
Our model and solution approaches could be useful

for digital display advertising market, which is
expected to reach $32 billion in US revenue in 2016,
and continues to grow rapidly at a rate of over 10%
per year (EMarketer 2016). Specifically, our
approaches are particularly relevant to demand-side
platforms (DSPs), which buy display ads from ad
exchanges, publisher networks, and other advertising
properties on behalf of their member advertisers.
Because a DSP can represent many advertisers, it
must allocate impressions internally among member
advertisers. A critical advantage of DSPs over the con-
ventional ad agency is their allocative efficiency
(Vidakovic 2013). By more efficiently allocating
impressions among advertisers (or ad campaigns),
DSPs can realize higher advertiser value, which in
turn enables them to charge a higher fee and attract
more advertisers in a long run. For this reason, this
study focuses on maximizing allocative efficiency in
the NAS problem. In section 6, we discuss the impli-
cations of our problem for display advertising in more
detail.
Our formulation differs from most prior

approaches to the advertising allocation problem in
that we follow an economic approach to model adver-
tiser preferences rather than relying on ad hoc specifi-
cations. For example, in the literature review, we
contrast our approach with several existing
approaches for addressing advertisers’ need for

diversifying across several audience categories. While
the formulation of NAS is motivated by the problem
of allocating display advertising, it is well suited for
allocation problems in sharing economy such as trav-
eler-room matching in vacation rental marketplace
and task allocation in crowd-sourcing labor markets
(Ho and Vaughan 2012). In these markets, the number
of distinctive types of tasks and services are high, and
customers often have heterogeneous substitution
preferences.
The contributions of this study are twofold: first,

we provide a theory for allocating and pricing numer-
ous types of goods given the heterogeneous substitu-
tion and risk-aversion preferences. The theory
addresses, for example, the existence of a price vector
and a corresponding allocation such that all price-tak-
ing agents find their allocation optimal for the given
prices. It also provides solid foundation for the devel-
opment of a fast algorithm for solving large scale
NAS problems. Second, we develop a scalable algo-
rithm for finding an optimal allocation of such goods
in a time-constrained environment, which is particu-
larly important because many NAS problems require
fast computation. Our simulation results suggest that
our algorithm can solve much larger problems than
generic optimization algorithms, and has significant
advantages over existing optimization packages in
terms of speed and memory consumption.
More specifically, we have developed two key theo-

retical findings in this study. The first is the equiva-
lence between Pareto optimality (PO) and the
existence of a price vector, a concept closely related to
competitive equilibrium prices (Gul and Stacchetti
1999). Once a price vector is given, one can easily
obtain the corresponding Pareto-optimal allocation by
converting multiple good types into a single standard
good type (a procedure we call “standardization”),
thereby dramatically reducing the dimension of the
problem. Our second key theoretical insight is the
finding that at least one optimal allocation is regular, a
key new concept we introduce in response to the diffi-
culty of directly finding the price vectors for PO allo-
cations suggested by the first key theoretical finding.
Each regular allocation has a pseudo price vector, one
that coincides with a true price vector if the regular
allocation is also PO. Unlike true price vectors,
pseudo price vectors are much easier to find. More
importantly, we also establish that at least one opti-
mal allocation satisfies the regularity condition, thus
we may focus only on regular allocations, which is
not only convenient but also sufficient.
Based on these theoretical insights, together with a

heuristic for searching the space of regular allocations
indexed by indicator matrices, we develop a new
algorithm called SIMS (standardization-and-indica-
tor-matrix-search). The algorithm iterates among
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regular allocation problems and solve them by the
standardization technique. Our simulation results
suggest that SIMS is up to three magnitudes faster than
generic convex optimization algorithms.
It is interesting to note that many of our theoretical

concepts and findings have parallels in the asset pric-
ing theory of finance, which provides guidance on
how financial assets, which yield uncertain cash
flows over multiple periods, should be priced. For
example, the concept of PO is closely related to the
absence of arbitrage in asset pricing. Analogous to
the equivalence between PO and the existence of a
price vector, it is established in finance the equiva-
lence between the absence of arbitrage and the exis-
tence of a state price vector (Ross 1978). Furthermore,
our standardization technique shares the same spirit
with the martingale methodology used for asset pric-
ing (Harrison and Kreps 1979; Duffie 2001). These
theoretical parallels underscore the similarity
between display advertising markets and financial
markets, which the literature has just begun to
explore (Muthukrishnan 2009; McAfee 2011).2 In this
sense, our theory can be viewed as the counterpart of
the asset pricing theory in the burgeoning new
market for display advertising.
The SIMS algorithm we develop here is in many

ways analogous to the simplex algorithm for linear
programming. For example, the indicator matrices
play a role as the basic solution in the simplex algo-
rithm. The simplex algorithm iterates through basic
solutions which essentially correspond to vertices of a
polyhedron while the SIMS algorithm iterates
through indicator matrices which essentially corre-
spond to faces of a polyhedron. Different from the
simplex algorithm, which finds the optimal solution
at vertices of the polyhedron, the SIMS algorithm
must go a step further to search the interior of a face
of a polyhedron for an optimal solution.
We organize the rest of the study as follows: we

review the related literature in section 2 and describe
our research problem in section 3. In sections 4 and 5,
we derive the theory and design the algorithm for
NAS problem. Section 6 discusses implications of our
results for online display advertising. Section 7 con-
cludes the study.

2. Research Background

The problem of allocating heterogeneous goods
among agents is a core problem of any exchange econ-
omy. Such a problem can be thought of as a trans-
portation problem where types of good are sources
and agents are destinations.3 Below, we review the
connections between this research and the related
transportation models and their applications to
display advertising.

Our work is related to a growing display advertis-
ing literature that applies transportation models to
solve the problem of allocating advertising resources.
The basic problem of this literature is that given the
supply of heterogeneous impressions, how to sched-
ule the advertisements from different ad campaigns
to maximize their goals. Langheinrich et al. (1999)
was among the first to formulate display advertising
as a linear transportation problem, where the goal is
to allocate ads across different audience types to max-
imize the total number of estimated clicks while meet-
ing the impression goals set by ad campaigns. Such a
linear programming formulation tends to target ads
on audience types where they perform the best, as
measured by estimated click through rates. However,
this also gives rise to an “over-targeting” problem
(Chickering and Heckerman 2000, Tomlin 2000)
where the optimal solution tends to show an ad to a
narrow group of audience types. This is undesirable
from an advertiser’s perspective, because advertisers
generally prefer to spread an ad across multiple audi-
ence types (Nakamura and Abe 2005). Several subse-
quent studies attempt to remedy this problem by
modifying the basic linear transportation problem,
including imposing minimum number of impressions
per audience type (Langheinrich et al. 1999; Naka-
mura et al., 2005) and adding a nonlinear entropy
term in the objective function to force wide-spread
allocation (Tomlin 2000). More recently, Turner (2012)
proposed a quadratic objective function that aims to
allocate impressions proportionally across all desir-
able audience types. The over-targeting problem
reflects advertisers’ preference for diverse audience
types (or “reach”), which in turn suggests there are
diminishing returns associated with each audience
type. Instead of heuristically patching the linear trans-
portation model, we adopt a more theory-driven
approach that directly models valuation functions
with diminishing returns and the implied preference
for diversity, using the utility function theory from
economics. As we will illustrate, our utility function
approach lends to nice economic interpretations of
our findings and reveals a deep connection between
the display advertising market and the financial mar-
ket. Another benefit of our approach is the added
flexibility of allowing heterogeneous substitution
preferences across advertisers.4

To our knowledge, our transportation formulation
has not been studied before. While our approach also
results in a nonlinear (concave-valuation) transporta-
tion problem, we note that it is quite different from
several other nonlinear (convex-cost) transportation
problems in the literature. One type of nonlinear
transportation problem, studied in the early eco-
nomics literature, is the multi-facility production-
transportation (P-T) problem (Sharp et al. 1970, Shetty
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1959). In a P-T problem, a single type of goods is pro-
duced at and shipped from multiple plants, and the
goal is to minimize total costs, which is the sum of lin-
ear transportation costs and convex production costs.
Unlike the P-T formulation, we model multiple types
of goods. Moreover, we also develop an algorithm to
solve our problem at a very large scale.
Another related nonlinear transportation problem

is the multi-commodity network flow (MCF) problem
studied in the context of telecommunication net-
works. This literature seeks to optimally route multi-
ple messages through a telecommunication network
subject to convex congestion costs at arcs (Babonneau
and Vial 2009, Ouorou et al. 2000). This literature is
also concerned with solving large-scale convex MCF
problems (e.g., Ouorou 2007; Babonneau and Vial
2009). Our problem differs from the convex MCF
problem in at least two ways: in our problem, cou-
pling occurs at destination nodes (via concave value
functions) rather than at arcs; the MCF problem
assumes identical costs for transporting messages
while we allow agents to have different marginal val-
ues for goods. Due to these differences, specialized
solution techniques for MCF problems cannot be used
for our problem.
Our problem belongs to a class of problem called

nonlinear resource allocation (NRA) problem, which,
in its general form, is formulated as (see Patriksson
(2008) and Katoh and Ibaraki (1998) for a review)

min fðx1; x2; . . .; xnÞ; s.t.
Xn
j¼1

xj ¼ b; xj 2
�
lj; uj

�
;

8j ¼ 1::n;

where the goal is to allocate one type of resource of
a total amount b to n activities so that the objective
value fðx1; x2; . . .; xnÞ is minimized. NRA problems
can be classified by the type of objective functions,
the type of constraints, and whether variables are
integer or continuous Katoh and Ibaraki (1998). An
NRA problem is said to have separable objective
functions if the objective function can be written in
the form of fðx1; x2; . . .; xnÞ ¼ Pn

j¼1 fjðxjÞ. Prior
research has shown that the separable convex opti-
mization with linear constraints is not NP-hard
(Chubanov 2016, Hochbaum and Shanthikumar
1990). In contrast, non-separable NRA problems are
harder, and generally have no polynomial algo-
rithms (Hochbaum 2007). Our problem in its origi-
nal form has a non-separable objective function, but
can be converted into a separable NRA problem by
introducing additional variables and constraints.
The conversion, however, adds general linear con-
straints, which are not one of several special con-
straint types well studied in the literature (Katoh

and Ibaraki (1998)). We also note that even in the
case of separable objective functions, neither of the
known polynomial algorithms, except for a few
quadratic optimization cases, is strongly polynomial
(which means the running time depends on the data
coefficients rather than only on the problem size)
(Hochbaum 2007). The existence of strongly polyno-
mial algorithms is still an open question.
In theory, our problem can be solved by any generic

convex optimization solvers.5 Contemporary interior-
point solvers such as LOQO (Vanderbei 1997) and
MOSEK (MOSEK 2015) are generally quite effective at
solving convex optimization programs with linear con-
straints (Bai et al. 1997; Boyd and Vandenberghe
(2004)). However, when such problems have extre-
mely high dimensions, generic convex-optimization
solvers are no longer practical, as observed in the MCF
literature (Ouorou et al. 2000). For applications such as
display advertising, we not only need to solve extre-
mely large problems, but also need to solve them in a
timely manner, demanding specialized solution tech-
niques for large scale problems that take advantages of
the special structure of our problem formulation.
This research is broadly related to a few other litera-

ture streams on display advertising, including the ad
scheduling literature and the auction literature for
display advertising. The ad scheduling literature is
concerned primarily with physically fitting ads into
the available space and time. Though conceptually
the ad scheduling problem is connected to the ad allo-
cation problem in the sense any allocation needs to be
scheduled for actual display, the ad scheduling litera-
ture has very different focus from ours. In particular,
this literature focuses more on how to fit ads of differ-
ent shapes into a shared space for a given audience
type (Adler et al. 2002, Deane and Agarwal 2012,
Kumar et al. 2006), than how to optimally match
advertisements to different audience types. This liter-
ature is complementary to our study because it tends
to consider more nuanced factors, such as exclusion
clauses (Wilbur et al. 2013), audience externalities
(Wilbur et al. 2013) and re-clicking effects (Kumar
et al. 2007). A separate literature investigates the auc-
tion approach to display advertising. For example,
Lahaie et al. (2008). design an auction framework that
permits flexible expression of advertiser preferences.
Chen et al. (2009) examine the issues of how to split
the shares of impressions in a multi-winner ad auc-
tion. Liu and Viswanathan (2014) study the optimal
choice of payment schedules in auctions for display
advertising.

3. Problem Formulation

We assume there are M types of goods (e.g., impres-
sions) and N agents (e.g., advertisers or ad
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campaigns). We denote the set of agents by N , the set
of good types (types for short) by M. Denoting the
quantity of type m allocated to agent i by xim 2 R6, we
formulate a nonlinear allocation problem with substi-
tution (NAS) as follows:

ðNASÞmax
ximf g

X
i2N

U i xi1; xi2; ::; ximð Þ ¼
X
i2N

Qi

X
m

aimxim

 !
;

ð1Þ

s:t:
X
i2N

xim �xm; 8m 2 M; ð2Þ

xim � 0; 8i 2 N ;m 2 M; ð3Þ
where xm � 0 represents the total supply of type m,
U ið�Þ is agent i’s valuation for the portfolio
ðxi1; xi2; . . .; ximÞ. The objective function of the NAS
problem consists of the sum of valuations U ið�Þ of all
agents. The constraints (2) and (3) represent the
usual feasibility and non-negativity requirements
respectively. We call aim agent i’s valuation coefficient
for type m. We assume the valuation function Qið�Þ to
be continuously differentiable, strictly increasing,
and strictly concave for technical convenience.7 Our
model and methods are applicable to other families
of increasing and concave value functions.8

We say type m is valuable to agent i if the valuation
coefficient for this type is positive (aim [ 0). Because
an agent’s valuation has a linear core, the agent con-
siders all valuable types as substitutes: the marginal
rate of substitution is constant and is determined by
the ratio of the corresponding valuation coefficients.
Our approach to modeling agent preference is

rooted in the utility function theory in economics.
Utility functions often take a concave form because of
diminishing marginal returns. When used in a
stochastic environment, a concave utility function can
capture agent i’s risk aversion. Concave utility func-
tions are widely used in insurance and finance (e.g.,
Markowitz 1959) and have been recently proposed as
an alternative to traditional stochastic and robust pro-
gramming approaches (Bai et al. 1997, Chen et al.
2007, Mulvey et al. 1995, Ye and Yao 2010).
For ease of reading, we list in Table 1 the main nota-

tions that will be used in theory development.

4. Theory

The purpose of this section is to better understand the
structure of the NAS problem which will then be
exploited to solve the problem efficiently, especially
when the dimension is high.9 We prove that it is pos-
sible to break down a multi-good problem (i.e., an
NAS problem with multiple types of goods, M > 1) to
a series of much simpler single-good ones (i.e., NAS

problems with only one type of good, M = 1), thus
providing a foundation for an efficient iterative
algorithm.
The basic idea of our theoretical analysis is to take

advantage of the correspondence between Pareto opti-
mality (PO)10, a necessary condition for optimality,
and the existence of a price vector, under which the
PO allocation is optimal for each agent (Theorem 1).
We further show that given a price vector, we can
reduce a multi-good NAS problem into a single-good
one, a technique which we call standardization (Theo-
rem 2). Finally, (Theorem 3) we establish that, in order
to find the optimal PO allocation, it is sufficient to
search among regular allocations (Theorem 3): finding
a regular allocation is much easier than finding a PO
allocation, and any regular allocation has a pseudo
price vector which also allows the standardization
procedure. These results pave the way for an efficient
algorithm that iteratively searches among regular allo-
cations and solve them efficiently using the standard-
ization technique.

Table 1 Summary of Notations

Symbol Meaning

i Index for agent
m Index for type of good
N Total number of agents
M Total number of good types
N The set of agents
M The set of good types
xi ¼ ðxi1; � � � ; xim ; � � � ; xiM Þ Agent i’s allocation, with xim being the

quantity of type m goods allocated to
agent i

x ¼ ðxT1 ; � � � ; xTi ; � � � ; xTN ÞT The N 9 M allocation matrix for all
agents, where xi is agent i’s allocation
and T denotes matrix transpose

aim Agent i’s valuation coefficient for
type m goods

x ¼ ðx1; � � � ; xm ; � � � ; xM Þ Total supply of each type of goods,
with xm being the total supply of
type m goods

Qi ð�Þ Agent i’s valuation function
p ¼ ðp1; p2; � � � ; pM Þ A price vector for the M types of goods
p~ ¼ ð~p1; ~p2; � � � ; ~pM Þ A pseudo price vector for the M types

of goods
z ¼ ðz1; z2; � � � ; zN Þ The allocation of standardized goods,

with zi being the allocation of
standardized goods for agent i

I Indicator matrix of dimension N 9 M
whose element Iim 2 f0; 1g represents
whether agent i’s is allowed to have
type m goods

~x The standardized supply
~Qi ð�Þ Agent i’s valuation function in terms of

standardized goods
�m Lagrange multiplier of the supply

constraint of type m good (i.e., its
shadow price)

vi A scalar used in Example 1 as a
parameter of the Qi ð�Þ function
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To our knowledge, no prior work in the transporta-
tion literature has established similar theoretical
results for their models. However, as we will discuss,
there are interesting analogies between Theorem 1
and the first fundamental theorem of asset pricing,
between Theorem 2 and the Martingale method
widely used for financial asset pricing, and between
Theorem 3 and the fundamental theorem of linear
programming that gives rise to the celebrated simplex
method.
We develop these theoretical results in five subsec-

tions, starting from the concept of an indicator matrix
which we use to denote a family of allocations. All
proofs are available in Appendix A.

4.1. Graph Representation and Indicator Matrix
As with other transportation problems, our problem
can also be represented in a graph where source
nodes are good types, destination nodes are agents,
and there is an arc connecting every source and desti-
nation pair. Thus, our problem is also a network flow
problem with the goal of figuring out the optimal flow
on each arc.
Instead of allowing flows from every source to

every destination, it is useful to study a restricted
problem where only a subset of flows are permitted.
The permitted flows can be represented by an N 9 M
indicator matrix I, whose element Iim 2 f0; 1g repre-
sents whether a flow is allowed from source (type) i
to destination (agent) m, that is:

Iim ¼ 0 ) xim ¼ 0; 8i;m:

We can define a NAS problem restricted by indicator
matrix I as follows:

ðRNASÞ max
ximf g

X
i2N

Qi

X
m

aimxim

 !

s:t:
X
i2N

xim �xm; 8m 2 M
ð5Þ

xim � 0; 8i 2 N ;m 2 M; ð6Þ

xim ¼ 0; 8i 2 N ;m 2 M; Iim ¼ 0: ð7Þ

The last condition requires the allocation matrix x to
have positive values only at places where the indica-
tor matrix I has “1”. The three conditions collec-
tively define the set of feasible allocations for the
restricted problem.
We use the following example throughout the

study:

EXAMPLE 1. Consider the following 4 9 4 example with
supply vector x = (12, 8, 6, 6) and exponential
valuation functions11

Qi xið Þ ¼ vi 1� e�
P4

m¼1
aimxim

� �
; i ¼ 1; 2; 3; 4;

where the parameters vi and the valuation coefficients aim
are given by:

v ¼
2
1
1:5
1:2

0
BB@

1
CCA; a ¼

0:3 0:16 0:1 0:2
0:2 0:5 0:12 0:05
0:13 0:1 0:4 0:08
0:06 0:1 0:2 0:3

2
664

3
775:

We consider three indicator matrices for this problem:

I� ¼

1 0 0 0

0 1 0 0

1 0 1 0

0 1 0 1

2
6664

3
7775; I1 ¼

1 1 0 0

0 1 0 0

1 0 1 0

0 1 0 1

2
6664

3
7775;

I2 ¼

1 1 0 0

0 1 0 0

1 0 1 1

0 1 0 1

2
6664

3
7775:

An NAS problem restricted by I� would allow agents 1–4
to have types {1}, {2}, {1, 3}, and {2, 4} respectively. I1

additionally allows agent 1 to have type 2. I2 additionally
allows agent 3 to have type 4.

We are interested in restricted problems that con-
tain the solution to the original NAS problem. We call
such an indicator matrix an optimal indicator matrix.
By definition, an indicator matrix of all 1’s is always
optimal. We are interested in non-trivial optimal indi-
cator matrices with fewer 1’s.

4.2. Pareto Optimality and Price Vector
Apparently, for an allocation to be optimal, it is neces-
sarily Pareto optimal (PO), which means that one can-
not make some agents better off without hurting
others through a reallocation of goods (i.e., no Pareto
improvement). A formal definition of PO is given in
Appendix A.3. We say an indicator matrix Iis PO if all
feasible allocations in the NAS problem restricted by I
are PO.
The second welfare theorem of economics estab-

lishes that there is a correspondence between PO allo-
cation and the existence of a set of competitive
equilibrium prices such that all price-taking agents
would prefer this allocation to any other affordable
allocation. We next show that a similar insight holds
for our problem. We first introduce the concept of a
price vector and then show that the existence of a price
vector is equivalent to PO.

DEFINITION 1. (Price Vector) A strictly positive vector
p ¼ ðp1; p2; . . .; pMÞ is called a price vector for (an
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NAS problem restricted by) an indicator matrix I if

aim
ain

� pm
pn

; 8i 2 N ;m; n 2 M; such that Iim ¼ 1: ð8Þ

The price vector captures the idea of “equilibrium”
prices in a competitive market such that if the goods
were to be traded at these prices, no agent would find
it profitable to do so. Condition (8) says that agent i
can have type m (Iim ¼ 1) only if her valuation for
type m relative to any other type (aim=ain) is at least as
high as the price for type m relative to any other type
(pm=pn). In other words, if there were a decentralized
market where the posted prices were p, the agent
would not gain by trading her current allocation for
another.
Because re-scaling of p would not affect condition

(8), the price vector as defined above, if it exists, is
clearly not unique. From now on, we say that a
restricted NAS problem has a unique price vector if all
of its price vectors are proportional to each other.
The following example shows that a price vector

may not exist or be unique for an arbitrary restricted
problem.

EXAMPLE 2. Continuing with Example 1, it can be
verified that, in the case of I�, any vector
p = (13, b, 40, 3b) with 10 ≤ b ≤ 20 satisfies Equation
(8). Hence, the price vector for I� is not unique. I1 has a
unique price vector p = (3.9, 2.08, 12, 6.24) One can
also prove that, in the case of I2, condition (8) cannot be
met, so there is no price vector for I2.12

Theorem 1 below establishes the correspondence
between PO and the existence of a price vector.

THEOREM 1. An indicator matrix I is Pareto optimal if
and only if there exists a price vector for I.

We briefly explain the intuition for the proof here.
We first establish that PO is equivalent to the absence
of any “profitable” trading cycle where each person
in a circle gives one type of her goods to the next per-
son. In the simplest setting with two agents, 1 and 2,
and two types of goods, A and B, any exchange is a
trading cycle: for example, agent 1 may exchange 1
unit of type A with agent 2 for x units of type B. The
existence of a price vector (plus the fact that agents 1
has A and agent 2 has B) implies that a1A

a1B
� pA

pB
� a2A

a2B
.

So if agent 1 finds the exchange profitable (which
requires x [ a1A

a1B
), then agent 2 must not find it prof-

itable (which requires x\ a2A
a2B
), and vice versa. Hence,

there cannot be a Pareto improvement trading cycle
in this setting. Conversely, if the allocation is PO, we
infer that a1A

a1A
� a2A

a2B
, thus we can always find a price

vector that satisfies the condition a1A
a1B

� pA
pB

� a2A
a2B
. Our

proof generalizes the basic idea in this simple case to
any number of agents and any number of good types.
It is interesting to note that Theorem 1 has a coun-

terpart in the asset pricing theory, namely, the first
fundamental theorem of asset pricing which states
that a financial market is free of arbitrage if and only
if there exists a state-price vector. The analogy has its
root in the connection between PO and absence of
arbitrage.

4.3. Price Vector and Standardization
Knowing the price vector is extremely valuable
because it allows us to convert multiple types into a
standard type, thus dramatically reducing the dimen-
sion of the problem, as we show in the next Theorem.

THEOREM 2. (Standardization) Let I be a Pareto-optimal
indicator matrix and p be an associated price vector.
Define the supply ~x and valuation functions
~Qið�Þ; i 2 N , for the “standard” good as:13

~x �
X
m2M

xmpm; ð9Þ

~Qi zið Þ � Qi
aim
pm

zi
� �

; 8i such that Iim ¼ 1 for some m

0; otherwise

(

ð10Þ
Let z� be the solution to the following standardized sin-
gle-good NAS problem

ðsingle� type NASÞ max
zif g

X
i2N

~Qi zið Þ

s:t:
X
i2N

zi � ~x

zi � 0; 8i 2 N

ð11Þ

and x be an allocation restricted by I that satisfies the fol-
lowing system of linear equations:14P

m2M;Iim¼1 pmxim ¼ z�i ; 8i 2 NP
i2N ;Iim¼1 xim ¼ xm; 8m 2 M

�
ð12Þ

The allocation x is a solution to the original NAS pro-
blem if it is non-negative.

Theorem 2 suggests that given a price vector, we
can convert multiple good types into a standard good
type. In this standardized economy, the total supply
of standard goods is the sum of all original goods
weighted by their prices (Equation (9)) and the valua-
tion coefficients of standard goods are valuation coef-
ficients of the goods divided by their prices (Equation
(10)). The system of linear equations (12) allows us to
recover an allocation of goods from an optimal
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allocation of standard goods. More importantly, if
both I and the associated price vector are chosen “cor-
rectly,” the allocation x recovered from the standard-
ized problem is a solution to the original NAS
problem.
In the proof of Theorem 2 (Appendix A.5), we

show that if a PO indicator matrix I and the asso-
ciated price vector p are “correct”, then p is pro-
portional to the competitive equilibrium prices15,
and the scaling factor is exactly the Lagrange mul-
tiplier for the supply constraint in the standardized
problem. Thus, an appropriately scaled price vector
for an optimal indicator matrix can also be inter-
preted as the equilibrium prices in a competitive
market.
It is also interesting to notice the connection

between our standardization technique and martin-
gale pricing method which has become the workhorse
in the financial industry over the last few decades. To
see this, we need to interpret the space of impression
types as the sample space (Ω) in a probability space
and the supply of numerous types of impressions as
an asset with uncertain values depending on the real-
ized outcome in the sample space. The price vector in
our standardization theorem, once normalized, essen-
tially defines a martingale probability measure (P)
under which the “standardized” supply is the expected
supply (~x ¼ EP½x�). More importantly, under this
probability measure P, the value of a portfolio is com-
pletely determined by its expectation under P and
agents care only about their expected allocations.
Hence, we only need to allocate goods among agents
based on the expected supply and later constructs the
actual allocation that is consistent with the expected
values and the supply constraints by solving a system
of linear equations.
Being able to reduce a multi-good problem to a sin-

gle-good one is a significant advantage, especially for
a large-scale problem with numerous types of goods.
Theorem 2 suggests the following iterative procedure
for solving an NAS problem.

• First, we identify a PO indicator matrix I and
obtain a price vector.

• Second, we use the price vector to standardize
the goods according to Equation (9).

• Third, we solve the standardized single-good
NAS problem, which can be done relatively
easily.

• Fourth, we obtain a candidate allocation for
the original problem by solving the system of
linear Equations (12).

• Finally, we test the optimality of the candidate
allocation and if it is not optimal, we find
another Pareto-optimal indicator matrix and
start from step 1.

However, there are still several practical challenges.
First, it is unclear how to find the first Pareto-optimal
indicator matrix and, if the current one does not pro-
duce the solution to the NAS problem, how to find
the next one. Though we have provided a condition
for PO in Lemma 3 of Appendix A.3, directly verify-
ing PO is far from trivial. Second, deriving a price vec-
tor from a known Pareto-optimal indicator matrix is
not straightforward either, even for simple cases such
as Example 2. We address these challenges in two
steps: first, we introduce a new concept called regular-
ity, which overlaps with PO but is much more compu-
tation-friendly; second, we introduce a heuristic
matrix search algorithm in section 5 for navigating in
the space of regular indicator matrices. The regularity
condition is built upon the notion of connectivity
between good types, which we discuss before the con-
cept of regularity.

4.4. Connectivity between Types of Goods
As we have mentioned before, an indicator matrix
can be alternatively thought of as describing a net-
work of agents and good types. Types of goods are
indirectly connected by agents who are linked to
them. Using this notion of connectivity, we can define
a connected indicator matrix.

DEFINITION 2. (Connected Types) In an indicator matrix
I, types m and n are connected via agent i, denoted as

m$i n, if the agent can have both m and n, i.e.,
Iim ¼ Iin ¼ 1.

Based on this notion of connectivity, we can define
a graph G for each indicator matrix I using types as
nodes and connecting agents as labels. Figure 1 illus-
trates the connectivity graphs associated with I�, I1,
and I2 respectively.

DEFINITION 3. (Connected Indicator Matrix) An
indicator matrix I is connected if its graph is connected.

In Example 1, I1 and I2 are connected but I� is not.
When an indicator matrix I is disconnected, its graph
can be decomposed into several connected compo-
nents. We call the set of nodes in each connected

(a) (b) (c)

Figure 1 Connectivity Graphs Corresponding to I�;I1 and I2 [Color
figure can be viewed at wileyonlinelibrary.com]
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component of the graph a connected component of the
indicator matrix I.
Recall that a Pareto-optimal indicator matrix must

have a price vector, but as we state earlier, the price
vector needs not be unique. It turns out that when a
Pareto-optimal indicator matrix is connected, the
price vector must be unique (i.e., up to a scaling
factor).

PROPOSITION 1. If a connected indicator matrix I is Par-
eto optimal, then the price vector for I is unique.

The intuition for this result is as follows. Whenever
an agent owns two types of goods, the price ratio
between these goods will be determined by the
agent’s marginal valuations for them. A connected
indicator matrix implies that all goods types are
directly or indirectly connected, and therefore their
price ratio are also determined.
As illustrated in Example 2, with each component

of I� having its own price vector and scaling factor
(i.e., 1 and b respectively for the two components in
the example) at the component level, the price vector
for the entire indicator matrix I� becomes non-unique.

4.5. Regularity
Recall that when two good types are connected by an
agent, their price ratio is determined by the marginal
valuations of that agent. What if two good types are
connected by multiple agents? It turns out that it
implies either sub-optimality or alternate solutions.
Regularity rules out such conditions, and yields enor-
mous benefits for computation.
To motivate the concept of regularity, we first con-

sider a simple example

EXAMPLE 3. Consider an example with two agents and
two types of goods. Let

U1 x1ð Þ ¼ Q1 x11 þ x12ð Þ; U2 x2ð Þ ¼ Q2 x21 þ bx22ð Þ:

Consider five connected indicator matrices

Ia ¼ 1 1

1 1

	 

; Ib ¼ 1 1

1 0

	 

; Ic ¼ 0 1

1 1

	 

;

Id ¼ 1 1

0 1

	 

; Ie ¼ 1 0

1 1

	 

:

Based on valuation coefficients, agent 1 is indifferent
between the two types. Depending on the value of b,
agent 2 may prefer one type to the other type or be indif-
ferent between them.

• If b < 1, agent 2 prefers type 1 to type 2. Hence,
agent 2 would be better off trading type-2 good for

type-1 good with agent 1 until agent 2 runs out of
type 2 (corresponds to Ib) or agent 1 runs out of
type 1 (corresponds to Ic). Since agent 1 is not
worse off from this trade, Ia is Pareto dominated by
Ib or Ic

• If b > 1, by symmetry, Ia is Pareto dominated by
Id or Ie.

• If b = 1, both agents are indifferent between the
two types, so we can let one agent trades one of her
types for another until one of the agents runs out
one good type (corresponds to Ib; Ic; Id, or Ie),
without affecting any agent’s valuation. In other
words, Ia is redundant for the purpose of finding
an optimal indicator matrix.

Therefore, regardless of the value of b, exclud-
ing Ia, does not sacrifice optimality: for the pur-
pose of finding optimal allocations, we can focus
on Ib through Ie. We note that in Ia, the two types
of goods are connected by two different agents,
whereas in Ib through Ie, each is connected by a
single agent. We generalize this important insight
by introducing the concept of regularity in the fol-
lowing steps.

DEFINITION 4. (Regular Connection) Given an indicator
matrix I, a type m has a regular connection with a
connected component S (m62S) if (a) m is connected to at
least one element of S and (b) all of m’s connections to S
are via the same agent.

This generalizes the notion of “connected by a
single agent” to one type against a component of
types.

DEFINITION 5. (Regular Connected Component) A
connected component is regular, if each type has a
regular connection with each of the connected
components formed by the remaining types in this
component, after removal of this type.

DEFINITION 6. (Regular Indicator Matrix) An indicator
matrix I is regular if all of its connected components are
regular.

By definition, to check for regularity, we only need
to ensure the regularity of each connected component
of an indicator matrix. For a connected component to
be regular, each type in the component must connect
to each connected component of the remaining types via a
single agent (but connections to different components
of the remaining types need not be through the same
agent). In the examples in Figure 1, I� and I1 are regu-
lar but I2 is not because, for instance, type 4 is con-
nected to component {1, 2, 3} via both agent 3 and
agent 4.
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We next show that a regular and connected
indicator matrix produces a pseudo price vector that
is closely related to the true price vector.

PROPOSITION 2. Let I be a connected and regular indica-
tor matrix. Then (a) there exists a vector
~p ¼ ð~p1; ~p2; � � � ; ~pMÞ; called a pseudo price vector, such
that for any two connected types m $i n,

~pm
~pn

¼ aim
ain

: ð13Þ

(b) The pseudo price vector is unique (in the same sense
as a “unique” price vector). (c) If I is also Pareto optimal,
then the pseudo price vector is the unique price vector for
I.

The results in Proposition 2 is quite intuitive.
Because the regularity and connectivity conditions
ensure that any pair of goods types are connected via
a single chain of agents, the pseudo price vector as
determined by connecting agents’ marginal valua-
tions is unique.
The vector as defined by Equation (13) is “pseudo”

because the regularity connection only speaks about
the connectivity, not whether there can be Pareto
improvement among connected agents. Proposition 2
suggests that the pseudo price ratio becomes a true
price vector (and a unique one) when I is not only
connected and regular, but also PO.
The pseudo price vector derived from condition

(13) is extremely easy to compute and is a natural can-
didate for the price vector. To focus the search among
regular indicator matrices, we must ensure that an
optimal allocation resides among regular allocations.
Our next result guarantees this.

THEOREM 3. (Regularity) If a Pareto-optimal allocation
x is not regular, then there exists a regular Pareto-
optimal allocation x0 such that all agents are indifferent
between x and x0.

The intuition behind this important theorem can
be seen from Example 3. The basic idea is that if a
Pareto-optimal allocation allows multiple connect-
ing agents (thus not regular), we can initiate
exchanges among these agents without hurting any
agent until some agents run out of their allocated
goods. This can go on until we reach a regular and
still PO allocation.
Since each Pareto-optimal allocation must have an

equivalent regular allocation (Theorem 3), it is
sufficient to search among regular indicator matrices.
Figure 2 illustrates the relations among three key con-
cepts in this section: optimality, Pareto optimality,
and regularity.

It is interesting to note that Theorem 3 plays a simi-
lar role in solving NAS as the fundamental theorem
of linear programming does in solving linear pro-
gramming problems. The fundamental theorem of
linear programming guarantees the existence of a
basic optimal solution, if an optimal solution exists.
Analogously, Theorem 3 ensures that there must exist
a regular optimal allocation.
The following result further shows the practical

importance of the concept of regularity for the algo-
rithm design. The proof is available in Appendix A.6.

PROPOSITION 3. If the indicator matrix I is regular, then
there exists a unique solution to the system of linear
equations defined by Equation (12), where the price
vector p is replaced by ~p, a pseudo price vector for I.

5. The SIMS Algorithm

Based on the theoretical results in section 4, we
develop the SIMS (standardization-and-indicator-
matrix-search) algorithm which has two major com-
ponents: the standardization component that solves
an RNAS problem given a regular indicator matrix,
and the indicator-matrix-search component that
suggests an alternative regular indicator matrix if
the current one turns out to be not optimal. We
elaborate the standardization procedure below and
describe the indicator-matrix-search component in
Appendix B.

5.1. The Standardization Procedure
Given our results on regularity (Theorem 3), the five-
step procedure suggested by Theorem 2 can be imple-
mented, using regular indicator matrices instead.
Results on connectivity and regularity suggest we

can decompose a regular indicator matrix into con-
nected components. Suppose a regular indicator
matrix I has J components. We denote Mj as the set of
types of goods within the jth component, N j as the set
of affiliated agents (i.e., who are allowed to have at
least one type in Mj), and Ij as the submatrix of I
corresponding to the jth component. We define a

Figure 2 P is the Set of Allocations that are PO and R is the Set of
Allocations that are Regular. At Least One Optimal Alloca-
tion Resides in D = P ∩ R [Color figure can be viewed at
wileyonlinelibrary.com]
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sub-problem as allocating goods of types in Mj among
agents inN j restricted by indicator matrix Ij.
Because the indicator matrix Ij for each sub-pro-

blem is connected and regular, we can calculate the
pseudo price vector and use that in place of the price
vector in the standardization procedure. Once we
have the solutions of all sub-problems, we have a can-
didate solution to the full original NAS problem,
because the allocation for each good type (or agent) is
determined by the sub-problem where it belongs. To
illustrate this, we continue with Example 1 and solve
the NAS problem restricted by I�.

EXAMPLE 4. Continue with Example 1 restricted by I�. We
can rearrange the rows (agents) and columns (goods) of I� as

1 2 3 4
1
2
3
4

1 0 0 0
1 1 0 0
0 0 1 0
0 0 1 1

2
664

3
775: ð14Þ

With the rearrangement, it becomes clear the matrix has
two disconnected components: the first component consists
of agents {1, 3} and types {1, 3} and the second one con-
sists of agents {2, 4} and types {2, 4}. As the first step,
we decompose I� into two sub-matrices I�1 (the top-left
component in Equation (14)) and I�2 (the bottom-right
component). As the second step, we standardize each sub-
problem. Take I�2 as an example. Noting that types 2 and
4 are connected via agent 4, we calculate the pseudo price
vector as ðp2; p4Þ ¼ ð1; 3Þ because a42=a44 ¼ 1=3. The
standardized supply is ~x ¼ 8p2 þ 6p4 ¼ 26 and the
standardized valuation functions are

~Q2ðz2Þ ¼ 1� e�0:5z2 ; ~Q4ðz4Þ ¼ 1:2 1� e�0:1z4
� �

:

The optimal solution for the standardized problem is
z�2 ¼ 6:7119; z�4 ¼ 19:2881: By Equation (12), we solve
the following linear equations

1 0 0
0 1 3
1 1 0

0
@

1
A x22

x42
x44

0
@

1
A ¼

6:7119
19:2881

8

0
@

1
A

and obtain a solution to the second sub-problem

x22 x24
x42 x44

� �
¼ 6:7119 0

1:2881 6

� �
:

A similar procedure yields a solution to the first sub-
problem

x11 x13
x31 x33

� �
¼ 11:823 0

0:177 6

� �
:

Putting together the solutions to the two sub-problems,
we obtain the following candidate solution,

x ¼
11:823 0 0 0

0 6:7119 0 0
0:177 0 6 0
0 1:2881 0 6

2
664

3
775:

Given a candidate solution, it is straightforward to
check its Optimality, using the following result.

PROPOSITION 4. Let x be the candidate solution
assembled from the solutions to the J sub-problems and
�m be the Lagrange multiplier (or shadow price) for type
m. x is the solution to the NAS problem if x is non-
negative and

premiumim � @Qi

@xim
=�m � 1� 0; 8m 2 Mj; i 62 N j; ð15Þ

where premiumim is termed as the value premium of
agent i for goods m.

Intuitively, condition (15) ensures that an agent
would not prefer goods from a different component.
The value premium captures the extent to which an
agent values a type m above its shadow price �m. At
an optimal allocation, no agent should have a positive
value premium for any type, particularly for types
from a different component. This makes intuitive
sense because otherwise, we should allocate more to
this user until her marginal valuation equals the sha-
dow price.
To check whether the candidate solution from

Example 4 is optimal, we compute the marginal
valuation matrix Q0ðxÞ as

Q0ðxÞ ¼

@Q1

@x11
@Q1

@x12
@Q1

@x13
@Q1

@x14

@Q2

@x21
@Q2

@x22
@Q2

@x23
@Q2

@x24
@Q3

@x31
@Q3

@x32
@Q3

@x33
@Q3

@x34

@Q4

@x41
@Q4

@x42
@Q4

@x43
@Q4

@x44

2
666664

3
777775

¼

0:017288 0:0092202 0:0057626 0:011525

0:0069754 0:017438 0:0041852 0:0017438

0:017288 0:013298 0:053193 0:010639

0:010463 0:017438 0:034877 0:052315

2
6664

3
7775;

where the bold-faced elements are Lagrange multi-
pliers k. Noticing that x is non-negative and there is
no positive value premium, we conclude that x is an
optimal allocation.

5.2. Numerical Studies
We use three sets of numerical simulations to study
the performance of the SIMS algorithm. In the first set
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of simulations, we are mainly interested in the con-
vergence behavior and scalability of SIMS. In the sec-
ond set of simulations, we compare SIMS to generic
convex optimization solvers. In the third set, we con-
duct a more realistic simulation of display advertising
problem, and demonstrates the applicability of SIMS
for this problem.

5.2.1. Performance and Scalability. In the first set
of simulations, each agent’s valuation function takes
an exponential form which we have used in earlier
examples. The coefficient vi are independently drawn
from the uniform distribution in the interval
[1000, 10,000] and the coefficients of aij are indepen-
dently drawn from the uniform distribution in the
interval [0.1, 1.1]. The supply of each type of good is
randomly generated according to a binomial distribu-
tion with 10 trials and a success probability of 0.4.
We first show that SIMS can effectively solve large-

scale NAS problems and demonstrate its fast conver-
gence. Thanks to the form of valuation functions, we
can obtain a strict upper bound for the objective16,
which is useful for studying the convergence behavior
of SIMS. We fix the number of agents to N = 1000 and
gradually increase the number of types from
M = 5000 to M = 50,000. Because an increase in M
naturally makes the allocation problem “easier” to
solve due to the increase of supply, we scale down the
supply vector proportionally as we scale up the value
of M. This makes the convergence processes corre-
sponding to different values of M more comparable.
For all these examples, the strict upper bounds of
objective values are in the interval of [5,824,870.03,
6,180,232.48]. Figure 3 plots the simulation results.
The plot on the left shows the objective value at each
iteration for M = 10,000, which quickly approaches
the upper bound. This suggests that SIMS can find an
approximately optimal allocation within a few

hundred iterations, which is highly valuable for prac-
tical purposes. The plot on the right further character-
izes the convergence behavior of SIMS in terms of the
number of iterations it takes to converge to
99.9999999% of the upper bound of the objective, and
the average number of seconds it takes to complete
one iteration. It might seem surprising that the num-
ber of iterations required to obtain an approximately
optimal solution decreases as we increase M. This
phenomenon is driven by two factors. First, a larger
value of M implies more optimal regular indicator
matrices, hence more paths to optimality; Second, the
initial indicator matrix we choose is more refined
when M is larger. Due to these two countervailing
forces, the total amount of time does not change dra-
matically as we increase M. These numerical results
suggest that SIMS is quite scalable.

5.2.2. Performance Benchmark. Given that our
problem is a convex optimization problem, it is useful
to compare the speed of SIMS with a generic convex
optimization solver. We choose three popular convex
optimization packages: MOSEK, CVXOPT, and
LOQO. MOSEK is a well-known commercial software
for solving large-scale mathematical optimization
problem, using the interior-point method. A recent
survey compares MOSEK favorably to CPLEX,
another leading commercial software for convex opti-
mization (Ben-Tal and Nemirovski 2001). CVXOPT is
a free python-based convex optimization software
developed at UCLA, and LOQO is a commercial opti-
mization software developed at Princeton University
for smooth constrained optimization based on an
infeasible, primal-dual, interior-point method.
We note that the interior-point method used by

most commercial software requires the construction
of the Hessian matrix during each iteration, which
has a memory requirement in the order of OððNMÞ2Þ.
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Figure 3 Convergence of SIMS [Color figure can be viewed at wileyonlinelibrary.com]
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In contrast, the memory requirement for SIMS is in
the order of O(NM) because all relevant variables dur-
ing each iteration have the same dimension as the
allocation matrix, which is N9M. This implies com-
mercial software such as MOSEK will have troubling
fitting an exceedingly large problem into the memory.
For this reason, we cap the problem size for MOSEK
at N = 100 and M = 5000 so that it can finish within
reasonable amount of time and the memory
requirement.
We first compare the speed of MOSEK and SIMS by

setting N = 100 and let M vary from 500 to 5000. The
left panel of Figure 4 compares the time used by each
software. Clearly, SIMS outperforms MOSEK when
the scale of the problem is large. To compare the per-
formance of SIMS with CVXOPT and LOQO, we fur-
ther reduce the scale of NAS problems so that
CVXOPT and LOQO can run properly. In particular,
we set the number of agents to N = 50 and increase M
from 50 to 100 at a step of 1. The right panel of Figure 4
compares the time used by each software. Clearly, the
performance of SIMS is far superior to CVXOPT and
LOQO.
Based on these numerical experiments, we believe

that SIMS has significant advantages in speed and
memory requirement that make it particularly useful
for solving extremely large-scale and/or time-critical
problems: First, speed comparisons in Figure 4 sug-
gest that for problems of large sizes, it would often
take the standard algorithm hours to solve while it
only takes SIMS a few seconds to solve. Second,
because the memory requirement in SIMS is O(NM)
compared with O

�ðNMÞ2� for most generic interior-
point solvers, SIMS can solve much larger problems
on commodity hardware, which by itself can justify
the use of SIMS over generic convex optimization
solvers.

5.2.3. Application to Display Advertising. To
validate the applicability of the SIMS algorithm in
real-world problems, we simulate a display advertis-
ing problem and use SIMS to solve them. Simulation
methods have been used to test other algorithms for
display advertising (Deza et al. 2015, Turner 2012). In
display advertising, we reinterpret “agents” as ad
campaigns to reflect the fact that each campaign has
its own goals and preferences. Following Zhang et al.
(2014) we assume that the each ad impression is char-
acterized by K binary features (e.g., male/female, day/
night, high income/low income, etc), resulting in 2K

total impression types. We also assume each cam-
paign may target a small subset set of impression
types, and different campaigns may use different fea-
tures for targeting (e.g., one campaign may target gen-
der while another may target income level). We
discuss how we simulate supplies, targeting criteria
for each campaign, and valuation coefficients below.
First, we let the number of features K = 14, result-

ing in 16,384 distinct impression types. Following
Turner (2012), we use Pareto distribution to account
for the fact that supplies are disproportionately large
for some impression types. Specifically, for each
impression feature, we draw two numbers, p0 and p1,
from a Pareto distribution with minimum 0, mean 1,
and shape parameter 5. We then let q1 ¼ p1

p1 þ p0
be the

probability of getting 1’s for this feature, and
q0 ¼ 1 � q1 for getting 0’s. We further assume that
the probability of drawing an impression type with

feature vector f ¼ ðf1; f2; . . .; fKÞ is PðfÞ ¼ q1f1q
2
f2
. . . qKfK ,

where qkfk is the probability of drawing fk 2 f0; 1g for

feature k. We conduct random draws according to
P(f) to obtain the total supply of impression types.
Second, to simulate campaign targeting, we first

draw a number k1 from a Poisson distribution with
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parameter 2 to be the number of targeted features. We
then randomly choose k1 features out of K as targeted
features. For each targeted feature k, we let the target-
ing criterion be fk ¼ 1 with probability qk1, and fk ¼ 0
with probability qk0.
Finally, after simulating the targeting criteria for

each campaign, we simulate the valuation coefficients
for those targeted impression types. Assuming an
exponential valuation function with parameters fvig
and faimg, we randomly generate faimg for targeted
impression types using a truncated normal distribu-
tion with mean 0.5, standard deviation 0.2, and min/
max of 0.1 and 1, respectively. The coefficients are
then scaled by a factor of 0.01 to make the optimiza-
tion problem difficult enough17. Furthermore, to
mimic the fact that campaigns have different budget
levels, we simulate the coefficients fvig by drawing
from a truncated normal distribution with mean 0.5,
standard deviation 0.2, and min/max of 0.1 and 1
respectively, and then scaling it by a factor of 10,000
to reduce floating-point numerical error although
mathematically the scaled problem is essentially
equivalent to the original one.
An upper bound of the NAS problem correspond-

ing to this simulated real-world example is
5026061.52. SIMS solved this NAS problem in 446.945
seconds (roughly 7.5 minutes) with objective
5026061.519957. On the other hand, MOSEK failed to
solve the problem within 100,000 iterations after
944904 seconds (roughly 11 days). The comparison
suggests that the advantage of SIMS over MOSEK is
enormous in more realistic scenarios.

6. Implications for Online Display
Advertising

By solving the NAS problem, we can obtain several
types of outputs: the price vector scaled by the
Lagrange multiplier of the standardized problem, an
optimal allocation, and a decomposition of the alloca-
tion matrix. The decomposition tells DSPs which
audience categories and advertisers (ad campaigns)
should be considered together. In the following, we
focus on the implications of our two most important
outputs: the price vector and the optimal allocation.

6.1. Implications of the Price Vector
We obtain a price vector as a by-product of the NAS
problem, but because our model is rooted in economic
theory, it has an intuitive economic interpretation and
can be used in different ways. First, the price vector,
as market clearing prices, can be used to determine a
set of internal prices for DSP if DSPs were to charge
these prices, advertisers should have no incentive to
move away from the optimal allocation. Second,
because the price vector has a shadow price

interpretation, DSPs can use these prices to decide
whether it has too few or too many impressions for
each audience category. For example, if the internal
price for an audience category is higher than its mar-
ket price, the DSP should consider buying more of
such impressions.

6.2. Implication of the Optimal Allocation
A second, and probably more direct, application of
our theory and algorithm is to guide the scheduling
of display ads for DSPs. Our NAS problem can be
part of the “optimize-and-dispatch” style ad schedul-
ing system (Parkes and Sandholm 2005), where the
first step is to solve an optimal NAS problem that pro-
duces an impression target for each campaign and
audience category. Then an online dispatcher allo-
cates incoming impressions one by one towards the
impression targets. We briefly discuss below how the
SIMS algorithm could be used for ad scheduling,
including how to adapt to supply uncertainties.
Consider an environment where impressions arrive

in a stochastic fashion over horizon [0, T]. We assume
that there is an initial forecast about the total supply
for each audience category and subsequent updated
forecasts. Let xt ¼ ðxt

1; x
t
2; . . .; x

t
mÞ be the forecasts

for the total supply of all audience categories at time
t. A general optimize-and-dispatch approach to ad
scheduling can unfold like this:

1. (Initial optimization) Solve the NAS problem
for the initial forecast x0 and obtain the initial
optimal terminal allocation (i.e., the target
number of impressions at T) x0.

2. (Incremental optimization) At period t, if the
forecast stays the same (xt ¼ xt�1), we use
the same terminal allocation xt ¼ xt�1. Other-
wise, we recompute xt as the solution to an
NAS problem with the updated forecast xt.

3. (Dispatch) Allocate impressions upon arrival
so that total allocated impressions are propor-
tional to xt as much as possible.

Provided that the updated forecasts converge to the
actual total supply as t ? T, the above optimize-and-
dispatch procedure will approximate the optimal ter-
minal allocation of the final NAS problem.
Now, what if the supply forecast changes? We

believe that a SIMS-powered ad scheduling system
can adapt to changing supplies fairly quickly. First,
because an indicator matrix is optimal for a wide
range of supply vectors, as long as the new forecast
does not deviate much, we may not need a new indi-
cator matrix. The only thing we need to do is to re-
solve a standardized NAS problem using the updated
supply vector (steps 3–4 of Algorithm 2 in
Appendix B.1), which can be done very efficiently.
Even when the new forecast calls for a new indicator
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matrix, we need not start from scratch because of the
iterative nature of SIMS. We may simply iterate from
the current indicator matrix still we reach a new opti-
mal indicator matrix. Because the SIMS algorithm is
shown to be very fast in our numerical experiments,
such incremental iterations can be done fairly fre-
quently (e.g., every 15 minutes).
To further improve the real-time performance of

the SIMS algorithm, one may compute multiple prob-
able supply scenarios ahead of time and store the
solutions for later use. The SIMS algorithm permits us
to store only the optimal indicator matrices and the
associated price vectors, which can be combined with
the supply forecast to quickly obtain the optimal allo-
cation by solving a standardized NAS.

7. Conclusion

Motivated by real-world applications of online dis-
play advertising, we propose a unique class of alloca-
tion problem (NAS) where agents have concave value
functions and different substitution preferences
across numerous types of goods. Viewed as a trans-
portation problem, our formulation permits greater
flexibility in modeling agent preferences than existing
transportation models because we allow multiple
types of goods and agents to have heterogeneous
rates of substitution for these goods.
Drawing upon the economic concept of Pareto opti-

mality, we develop a theory and design an algorithm
for solving NAS problem. The SIMS algorithm iterates
through specially constructed indicator matrices each
of which permits fast solution via a combination of
decomposition and standardization techniques. Our
simulation results show that SIMS runs up to three
orders of magnitude faster than generic interior-point
nonlinear solvers. Our theory has interesting connec-
tion with the martingale methodology used in asset
pricing while our algorithm is connected to the Sim-
plex algorithm for linear programming problems.
This research has its limitations that warrant fur-

ther research. We have focused on non-physical
goods and abstracted away transportation costs. It
would be interesting to combine our problem with a
transportation problem in a similar manner as Sharp
et al. (1970). We have used exponential valuation
functions for numerical experiments, it would be
interesting to evaluate and compare the performance
of SIMS under alternative valuation functions. So far,
we have relied on numerical studies to establish the
performance and scalability of SIMS. Future research
could establish the complexity of SIMS. Once we have
a regular indicator matrix, solving the corresponding
single-good problem and verifying its optimality can
be done quickly in polynomial time. We conjecture
the iteration over regular indicator matrices to have

similar complexity as the iteration over vertices in the
Simplex method, which is known to be exponential in
the worst case but nevertheless takes polynomial time
in practice (Spielman and Teng 2004).
This research can be extended in several ways.

First, the current matrix search algorithm we use in
SIMS is by no means the most efficient one and we
believe it can be further improved with better heuris-
tics. Because matrix regularity is an inherent property
of any binary matrix, we hope future research on reg-
ularity can lead to powerful matrix search algorithms.
Second, as we indicate in footnote 3, SIMS is applica-
ble even if the objective functions are not concave. Its
performance under non-concave objectives and com-
parison with generic nonlinear optimization software
are promising directions for further study. Third, it
would be interesting to both theoretically and numer-
ically compare the SIMS algorithm with a recently
proposed algorithm (Chubanov 2016) for separable
convex optimization problems. Finally, it would also
be appropriate to extend our problem to a stochastic
setting. Extensive research has been done on decision
under uncertainty, using stochastic programming
(Sahinidis 2004, Shapiro et al. 2009) and robust pro-
gramming (Bai et al. 1997, Mulvey et al. 1995). It
would be interesting to explore the utility of our
framework for dealing with resource allocation prob-
lems with heterogeneous preference for uncertainty.
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Notes

1For example, in Internet advertising, an Internet user’s
past behavior and geographic location can be tracked
using browser cookies, allowing advertisers to draw infer-
ences about a user’s demographic background and inter-
ests. In mobile advertising, device and content
characteristics, as well as geographic information may also
be used to target and predict user interests.
2Practitioners seems to be ahead of the academics in terms
of realizing the similarities between the two markets. For
example, a co-founder of a digital ad trading company
who spent 15 years in the financial industry commented
that “We’re talking about a market that shares a lot of the
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same characteristics as financial markets” and they are
“looking to apply investment banking tools and philoso-
phies to online advertising.” For more details, please see
the following Wall Street Journal article: http://www.wsj.
com/articles/SB10001424052702303949704579459103743176
792.
3Transportation problem is an important branch in the
field of operations research, established several decades
ago with pioneering works by Kantorovich (1960); Hitch-
cock (1941); Koopmans (1949); Dantzig (1951) and numer-
ous subsequent contributions (see Ahuja et al. (1993) for a
comprehensive overview).
4The entropy approach, for instance, imposes the same
preference for diversity across all advertisers.
5For a comprehensive review of convex optimization, see
Bazaraa et al. (2006); Boyd and Vandenberghe (2004).
6The number of impressions is typically extremely large in
this industry, which makes the continuous relaxation of
the decision variables less of a concern.
7The theory and the algorithm we will develop do not
depend on the convexity assumption as long as certain
technical requirements are met to ensure global
optimality.
8Another way to generalize our formulation is to allow
multiple portfolios per agent in a generalized valuation
function. For example, for an agent who has 8 portfolios
Si1; Si2; . . .; Si8; we may define her valuation as

U i xið Þ ¼
X8
l¼1

Qil

X
m2Sil

aimxim

 !
; 8i 2 N : ð4Þ

Treating each portfolio as a separate agents, we can clearly
solve the generalized allocation problem in the same way
as the original NAS problem. Because the marginal valua-
tion for each portfolio decreases in the quantity allocated,
an agent would prefer an allocation that spreads across
multiple portfolios than those concentrate in one. In other
words, such a generalized valuation function can capture
the “variety-seeking” preferences.
9Our NAS problem can be converted into a separable
convex optimization problem with general linear con-
straints, which is not NP-hard (Chubanov 2016). How-
ever, due to the high dimensionality of the solution
space, general purpose convex optimization solvers,
despite their theoretical efficiency, are not practical for
solving large-scale NAS problems, as our numerical
studies will show.
10We also use PO as a shorthand for Pareto optimal.
11The exponential valuation function is commonly used in
economics and finance (Malamud , et al. 2013, 2016) to
capture an economic agent’s aversion to variation in con-
sumption levels and the agent’s decreasing marginal util-
ity from consumption.
12In the case of I1, the 1’s in rows 1, 3, and 4 imply that
p1
p2

¼ 0:3
0:16 ;

p1
p3

¼ 0:13
0:4 ,

p2
p4

¼ 0:1
0:3, which together yield a unique

solution to p (up to a scaling factor). In the case I2, row 3
additionally implies p1

p4
¼ 0:13

0:08, which contradicts the exist-
ing conditions, thus a price vector does not exist.
13Note that ~Qið�Þ is well defined because for any agent i,
when there are multiple m such that Iim ¼ 1, we can use

any m to define ~Qið�Þ because the ratio aim=pm will be same
for all different m by Equation (8).
14It should be noted that the existence of a solution to the
system of linear Equations (12) is guaranteed by a techni-
cal result (Lemma 5) in Appendix A.
15A competitive equilibrium consists of a price vector and
an allocation such that every agent prefers her current
bundle to any other affordable bundle.
16Because QiðxiÞ ¼ við1 � e�RM

m¼1aimximÞ; one theoretical
upper bound for the objective function is �Q � RN

i¼1vi.
17To see this, imagine the extreme case when the coeffi-
cients aij are extremely large. A trivial optimal allocation
is to allocate enough supply to each campaign one by one
so that its valuation approximates the upper bound (i.e.,
vi). In general, the difficulty level of the problem increases
with the scale of supply and the scale of the coefficients.
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