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Abstract

When pricing �nancial assets, rational agents should think in terms of proportional price
changes, i.e., returns. However, stock price movements are often reported in dollar rather
than percentage units, which may cause investors to think that news should correspond to a
dollar change in price rather than a percentage change in price. Non-proportional thinking in
�nancial markets can lead to return underreaction for high-priced stocks and overreaction for
low-priced stocks. Consistent with a simple model of non-proportional thinking, we �nd that
total volatility, idiosyncratic volatility, and absolute market beta are signi�cantly higher for
stocks with low share prices, controlling for size. To identify a causal e�ect of price, we show
that volatility increases sharply following stock splits and drops following reverse stock splits.
The economic magnitudes are large: non-proportional thinking can explain a signi�cant portion
of the �leverage e�ect� puzzle, in which volatility is negatively related to past returns, as well
as the volatility-size and beta-size relations in the data. We also show that non-proportional
thinking biases reactions to news that is itself reported in nominal rather than scaled units.
Investors react to nominal earnings per share surprises, after controlling for the earnings surprise
scaled by share price. The reaction to the nominal earnings surprise reverses in the long run,
consistent with correction of mispricing.

∗Kelly Shue: Yale University and NBER, kelly.shue@yale.edu. Richard Townsend: University of California San
Diego, rrtownsend@ucsd.edu. We thank Huijun Sun and Kaushik Vasudevan for excellent research assistance and the
International Center for Finance at the Yale School of Management for their support. We thank seminar audiences
at the LSE, NBER Behavioral Finance, and Queen Mary University. We thank James Choi, Sam Hartzmark, Bryan
Kelly, Andrei Shleifer, and Stefano Giglio for helpful comments.



1 Introduction

Rational agents should think in terms of proportional rather than nominal price changes in �nancial

markets. The nominal price level of any �nancial security has no real meaning; its price can easily be

changed through stock splits or reverse splits. What matters for �nancial securities is returns, i.e.,

the proportional change in price. However, changes in the value of stocks are frequently reported

in dollar units rather than or in addition to percentage returns. For example, the print version

of the Wall Street Journal historically only displayed the daily dollar change in share prices and

modern apps such as the Apple iPhone stock application display only the dollar change in prices as

the default option. Given the emphasis on dollar changes in share prices in the �nancial media, we

hypothesize that investors may mistakenly think that a given piece of news should correspond to a

certain dollar change in price rather than a percentage change in price. In other words, investors

engage in non-proportional thinking.

For example, consider two otherwise identical stocks, one trading at $20/share and another

trading at $30/share. Investors may think the same piece of good news should correspond to a

dollar increase in price for both stocks. Thinking about this news in dollar rather than return units

leads to relative return underreaction for the high-priced stock at $30/share and relative overreaction

for the low-priced $20/share stock. For a given sequence of news, non-proportional thinking would

then lead to higher return volatility for low-priced stocks and lower return volatility for high-priced

stocks. Similarly, non-proportional thinking may lead investors to overreact to relevant macro news

for low-priced stocks, leading to higher absolute market beta for lower priced stocks. Our hypothesis

is also motivated by experimental evidence in Svedsäter, Gamble, and Gärling (2007) showing that

laboratory subjects report what amounts to a higher expected percentage change in price in reaction

to news for hypothetical �rms with lower nominal share prices. In this paper, we test whether these

predictions hold in real �nancial markets and explore how non-proportional thinking can a�ect

1



volatility and other pricing patterns.

Consistent with the predictions from a simple model of non-proportional thinking, we �nd that

lower nominal share price is associated higher volatility, measured in three ways: total return

volatility, idiosyncratic volatility, and absolute market beta. The economic magnitudes are large: a

doubling in share price corresponds to a 20-30 percent reduction in these three measures of volatility.

Of course, the negative relation between volatility and nominal share prices could be caused by other

factors. In particular, it is widely known in the asset pricing literature that small-cap stocks tend

to have higher total volatility, idiosyncratic volatility, and market beta, possibility because small-

cap stocks are fundamentally more risky. Small-cap stocks also tend to have lower nominal share

prices, so the price-volatility relation in the data could be driven by size. However, we �nd that the

negative price-volatility relation remains equally strong after introducing �exible control variables

for size. Moreover, the negative relation between size and volatility �attens by more than 80%

after we introduce a single control variable for nominal share price. Thus, the results suggest that

non-proportional thinking may explain the size-volatility relation rather than the reverse.

Overall, we �nd that the negative volatility-price relation is robust and remains stable in magni-

tude after controlling for other potential determinants of return volatility such as volume turnover,

market-to-book, leverage, and sales volatility. The results hold in the cross section and in panel

regressions that control for �xed characteristics of each stock. The results hold for stocks in the

recent time period and among stocks with high share prices. We also show that the results cannot

be driven by historical tick-size limitations. The magnitude of the volatility-price relation declines

with institutional ownership and size, suggesting that the volatility-price relation represents a form

of mispricing that is weaker among stocks that are easier to arbitrage. Finally, we �nd that lower

priced stocks exhibit greater return reactions to large market movements, and these return reacti-

ons revert in the long run. This pattern is consistent with over-reaction to news among low-priced
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stocks.

While this collection of facts is consistent with non-proportional thinking, we remain concerned

that an omitted factor may drive the negative relation between price and volatility. For example,

low nominal share price can be the result of negative past returns, and poor past performance

may directly be associated with higher volatility and risk. To better account for potential omitted

factors, we conduct a regression discontinuity and event study around stock splits. Following a

standard 2-for-1 stock split, the share price falls by half. While the occurrence of a split in a given

quarter is unlikely to be random (e.g., �rms often choose to split following good performance), the

fundamentals that drive the split decision are likely to be slow-moving since most splits are pre-

announced one month ahead of the split event. Our tests only require that �rm fundamentals don't

change dramatically after the split, relative to the day before. We �nd a sharp discontinuity around

stock splits: the stock's return volatility, idiosyncratic volatility, and absolute market beta increase

by approximately 30 percent immediately after the split. Further, the volatility remains high with

a gradual monotonic decline over the course of the next six months. We further �nd sharp declines

in volatility following reverse stock splits (e.g., when 2 shares become 1 share), in which the share

price jumps up.

We also show that our results are unlikely to be explained by a change in investor base or media

coverage that could accompany splits. Previous research has argued that low prices, and splits in

particular, attract speculative retail investors, who could push up volatility. Along the same lines,

media coverage of the �rm usually increases around splits, which could contribute to volatility. We

argue that these factors are unlikely to explain the change in volatility for four reasons. First, we

observe an immediate jump in volatility after the split, even though the investor base is unlikely to

change dramatically in a single day (we also �nd that institutional ownership remains approximately

constant after the split). Second, the jump in volatility persists for many months, so it is unlikely to
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be caused by a temporary increase in media coverage. Third, simple models of speculative investors

(e.g., Brandt et al., 2009) predicts higher idiosyncratic volatility, but not necessarily overreaction

to market news. However, we �nd a sharp increase in absolute beta following splits, which is

consistent with non-proportional thinking leading to overreaction to market news for low-priced

stocks. Fourth, speculation and increased media coverage should lead to increased volume turnover

following the split. Instead, we observe a sharp and persistent decline in volume following splits and

the opposite pattern for reverse splits. This change in volume is instead consistent with a model

in which some investors naively trade a �xed number of shares for each stock. Following a split,

the share �oat doubles, so the number of shares traded relative to the �oat declines after splits and

rises after reverse splits.

Our empirical results so far are consistent with a simple model of non-proportional thinking in

which investors react to news with a reference point for a share price in mind. Investors observe

the magnitude of the news and choose a dollar reaction to the news that approximately translates

to the correct percentage price change to the news if the share price equaled the reference price.

This reference price could the price of a typical stock in the market or the share price just before a

stock split. The fact that volatility sharply rises and then gradually declines following stock splits

is further consistent with a model in which investors gradually update the reference price toward

the current stock price. To explore the rate at which investors update a stock's reference price, we

look at the relation between volatility and the stock's past returns over various return windows.

By holding the total return over various time horizons �xed, we can vary the rate at which prices

have changed. We �nd that the negative relation between past returns and subsequent realized

volatility becomes weaker the farther back the return window is extended. In other words, a stock

that has doubled in value in the past two months is signi�cantly more volatile than a stock that

doubled in value over the last year. These results suggest that investors gradually and incompletely
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update reference prices toward the current price level, implying that misreaction to news should be

greater for stocks that have experienced recent large absolute returns. These results also show that

non-proportional thinking may contribute to the well-known �leverage e�ect,� in which volatility is

negatively related to past returns (e.g., Black, 1976; Glosten, Ravi, and Runkle, 1993). While a

number of papers (e.g., Christie, 1982) argue that the negative return-volatility relation may be due

to leverage (as asset values decline and debt stays approximately constant, the equity becomes more

leveraged and therefore more risky), other research (e.g., Figlewski and Wang, 2001) cast doubt on

the leverage explanation for the leverage e�ect. We show that non-proportional thinking o�ers a

compelling alternative explanation for this empirical pattern: as prices decline, volatility increases

because investors react to news in dollar units based upon a higher reference price and thereby

overreact in percentage units.

In the �nal part of the paper, we explore a related prediction relating to non-proportional

thinking. We hypothesize that investors may neglect to scale news that is itself reported in nominal

rather than the appropriate proportional units. In the case of �rm earnings announcements, the best

measure of the news is likely to be the nominal value of the earnings surprise, scaled by the �rm's

price just before the news is released. For example, earnings news in which a �rm beats analyst

expectations by 5 cents per share is a greater positive surprise if the �rm's share price is $20/share

than if the �rm's share price is $30/share. However, investors may mistakenly focus on the nominal

earnings surprise of 5 cents per share because that is the value that is most commonly reported in

the �nancial press. We �nd that investors react strongly to nominal earnings per share surprises,

after controlling for the earnings surprise scaled by share price. If prices move toward fundamentals

in the long run, we expect the initial return reaction to the nominal earnings surprise to reverse

over time as the mispricing is corrected. Because investors react to the nominal earnings surprise,

they also underreact to the scaled earnings surprise, so we expect the scaled earnings surprise to
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predict future drift in prices. Consistent with these predictions, we �nd that returns drift in the

direction of the scaled earnings surprise and against the direction of the nominal earnings surprise

in the long run.

Our results contribute to the literature in four ways. First, we document a new way in which

thinking about value in the wrong units (i.e., dollars instead of percents) can a�ect behavior and

prices in �nancial markets. In related work, Shue and Townsend (2017) show that the tendency

to think about executive option grants in terms of the number of options granted rather than the

Black-Scholes value contributed to the dramatic rise in CEO pay starting in the late 1990s. Birru

and Wang (2015, 2016) show that nominal price illusion causes investors to mistakenly believe

that low-priced stocks have more �room to grow.� Finally, our research is related to Baker and

Wurgler(2004ba,b), Baker, Nagel, and Wurgler (2006), and Hartzmark and Solomon (2017, 2018),

which show that investors fail to incorporate dividend payouts when evaluating total returns.1

Second, we contribute to the literature on proportional (or relative) thinking (e.g., Thaler, 1980;

Tversky and Kahneman, 1981; Pratt, Wise, and Zeckhauser, 1979; Azar, 2007; and Bushong, Rabin,

and Schwartzstein, 2015). This literature has largely focused on instances in which households think

in proportional units when they should think in levels. For example, consumers may be willing to

travel to a di�erent store to get a $5 discount on a cheap product, but not for the same $5 discount

on an expensive product. These consumers incorrectly focus on the $5 discount as a proportion of

the good's retail price. In contrast, we explore a �nancial markets setting in which investors should

think in proportional units, and yet they sometimes focus on levels and fail to scale by price.

Third, our �ndings shed light on the potential origins of volatility in �nancial markets. Since

Shiller (1981), academics have explored the question of what factors determine volatility and risk.

Our results suggest that non-proportional thinking may be an important part of the explanation and

1Our research is similar in spirit to the money illusion literature, which shows that households confuse the nominal
and real value of money (e.g., Fisher, 1928; Benartzi and Thaler, 1995). In this paper, we show that investors focus
on nominal units instead of proportional units.
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that well-known asset pricing facts such as the leverage e�ect and the size-volatility and size-beta

relations in the data can be reinterpreted through the lens of non-proportional thinking.

Fourth, we o�er a new explanation of over- and underreaction to news and subsequent drift

patterns in asset prices. The existing literature in behavioral �nance has mainly viewed over- and

underreaction to news through the lens of limited attention (e.g., Hirshleifer and Teoh, 2003),

incorrect weighting of news relative to one's priors (e.g., Barberis, Shleifer, and Vishny, 1998),

or mistaken beliefs regarding extrapolation and reversals (e.g., Hong and Stein, 1999). Non-

proportional thinking o�ers a complementary explanation: over and under-reaction to news and

consequent drift can also be caused by investors thinking about asset values and news in the wrong

units.

2 A simple model

Consider a stock with current share price P . Let P0 be the reference price for the stock in the minds

of investors. P0 could be the price of a typical stock in the stock market, the price of the stock in

a previous time period, or the price of the stock prior to a stock split. Suppose news Z is released

that contains information relevant for the valuation of the stock. If markets are fully e�cient and

rational, the release of news Z should imply a δ fractional change in the price of the stock, i.e., δ

is the rational return reaction to the news. However, non-proportional thinking may lead investors

to apply a heuristic and think that news Z should move prices by a nominal amount X. The dollar

movement of X is such that it roughly equals the rational return reaction if the stock's price equaled

the reference price Po, i.e., X = δP0. Thus, non-proportional thinking implies the return reaction

to news Z is X
P = δP0

P . If we allow investors to partially engage in non-proportional thinking, the
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return reaction the news Z can be expressed as:

r = θ
δP0

P
+ (1− θ)δ (1)

θ ∈ [0, 1] measures the extent to which investors engage in non-proportional thinking. If investors

are fully rational, θ = 0, and the return reaction r = δ. If investors fully su�er from non-proportional

thinking, θ = 1, and the return reaction to the news behaves as though the stock had an reference

price P0, leading to r = δP0/P .

This simple framework delivers a number of testable predictions. First, whether investors under-

or overreact to news will depend on the ratio of the reference price to the current price: P0/P . If

the stock's price is high relative to the reference price, then investors will underreact to the news,

leading to |r| < |δ|. If the stock's price is low, then investors will overreact to the news, leading

to |r| > |δ|. Second, this initial under- or overreaction represents mispricing, which implies drift

patterns if we believe that prices correctly incorporate news Z in the long run. Speci�cally, if the

stock's price is high relative to the reference price, we expect continued drift to correct for the initial

underreaction. If the stock's price is low, we expect a long run reversal to correct for the initial

overreaction. Third, for a given sequence of news over time, we expect the return volatility of the a

stock to be higher when the stock's price is lower related to the reference price. The higher volatility

arises from the return overreaction to each piece of news. Finally, we expect the absolute value of

the market beta of a stock to be higher if its price is lower relative to the reference price, because

the return for the stock will overreact to market-level news. Note that non-proportional thinking

ampli�es the absolute value of beta rather than beta. For example, if a stock's true beta is negative

and the market news is positive, the stock's share price should drop and the share price should drop

by more if investors overreact to the news.
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To test these predictions, we examine cases in which P0/P is likely to be low or high. First, P0

may be a simple constant representing a typical share price in the market, e.g. $25/share. If so,

P0/P is high for stocks with low nominal share price and low for stocks with high nominal share

price. Second, P0 may be the price of a stock just prior to a stock split event. After a 2-for-1 stock

split P0/P = 0.5, so we expect return overreaction, leading to higher return volatility and higher

absolute beta. Finally, investors may think of each stock's reference price as its price at some period

in the past. Therefore, stocks that have decreased in value may be more likely to have P0/P > 1, so

we would again expect overreaction to news, leading to higher return volatility and higher absolute

beta.

To summarize, when prices are low (high) relative to a reference price, we expect:

1. Initial overreaction to news (initial underreaction to news)

2. Long run reversal (long run drift)

3. Higher total volatility and idiosyncratic (lower total volatility and idiosyncratic volatility)

4. Higher absolute beta (lower absolute beta).

Because we don't always observe the arrival of speci�c pieces of news, we will focus our baseline

analysis on the third and fourth predictions, which can be tested even if the news itself is not

observed. In supplemental analysis, we attempt to isolate large news shocks and test for initial

under- or over-reaction and subsequent corrections through either long-run drift or reversals. Like

many other behavioral models with a reference price, we also face the limitation that we do not

directly observe P0. Therefore, we present baseline tests for the simple case in which P0 is an

unobserved constant representing a typical stock in the market. In later tests, we look at cases in

which the reference price may change over time.
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We also hypothesize that non-proportional thinking may lead investors to exhibit biased reacti-

ons to news that is itself reported in nominal rather than scaled units. We consider the case of

earnings surprises, which are usually reported by the �nancial media as the nominal surprise (the

raw di�erence between actual earnings and analyst consensus forecasts) rather than the scaled sur-

prise (the nominal surprise divided by the share price just before the news is released). If investors

are fully rational, they should only react to the the scaled surprise. However, if investors �xate

on the nominal surprise, we predict that short run returns will also react to the nominal surprise.

If prices correctly incorporate real news in the long run, then we expect that the long run return

reaction will only depend on the scaled surprise and not on the nominal surprise.

3 Data

The sample period for our baseline analysis runs from 1926�2016. However, the beginning of the

sample period for each empirical test varies depending on when coverage begins for supplementary

data sources used in the analysis. We also show that our results are robust across di�erent time

periods. Summary statistics of our data can be found in Table 1.

3.1 Stock Market Data

We obtain stock market data from CRSP, which o�ers information relating to returns, nominal

share prices, stock splits, daily high and low, volume, and market capitalization. Data on the

market excess return, risk-free rate, SMB, HML, UMD, and size category cuto�s come from the

Ken French Data Library. We measure the return for day t as the return from market close on day

t− 1 to market close on day t.

The sample is restricted to stocks that are publicly traded on the NYSE, American Stock

Exchange, or NASDAQ. We also restrict the sample to assets that are classi�ed as common equity
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(CRSP share codes 10 and 11). To reduce the in�uence of outlier share prices, we exclude the top

and bottom 1% of the sample in each year-month period in terms of 1-month lagged shared price

from the analysis.

In our baseline tests, we measure �rm i's total return volatility in month t as volit, equal to the

annualized standard deviation of daily returns within each calendar month. We require at least 15

trading days in each month to have non-missing return data in CRSP to compute total volatility.

We drop observations with zero monthly total volatility, i.e., stock-months in CRSP where the stock

price is exactly the same for all trading days in a month. We also apply these sample restrictions to

our measures of betait and ivolit. We measure each �rm's monthly market beta as betait, equal to

the covariance between daily �rm excess returns and market excess returns divided by the variance

of daily market excess returns within each calendar month. We measure each �rm's idiosyncratic

volatility as ivolit, equal to the standard deviation of the �rm's daily abnormal returns, where

abnormal return is de�ned as the �rm return minus betait multiplied by the market return.

Our baseline tests use observations at the �rm-month level. To control for each �rm's market

capitalization, we match each �rm's size at the end the previous month to size categories during

the same time period de�ned using the NYSE size cuto� data from the Ken French Data Library.

To classify �rms by nominal share price, past returns, etc., we always use past information.

3.2 Firm Accounting Data

We use accounting data to control for �rm characteristics. These data come from the COMPUSTAT

Quarterly Fundamentals �le. Coverage begins in 1961. The primary control variables we construct

are sales volatility, market-to-book ratio, and leverage. We de�ne sales volatility as the standard

deviation of year-over-year quarterly sales growth over the previous four quarters. That is, for each

quarter, we compute the growth of sales (sale) over the year ago quarter. We consider year-over-year
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sales growth to be unde�ned if sales were reported to negative in one of the two quarters. We then

compute the standard deviation of year-over-year sales growth over the previous four quarters. In

cases where data are missing for some of the quarters, we compute the standard deviation based on

the non-missing quarters, assuming there are more than one. We de�ne the market-to-book ratio

as market capitalization (csho*prcc_f) plus the book value of assets (at) less shareholder equity

(seq), all divided by the book value of assets (at). We de�ne leverage as the ratio of short-term and

long-term debt (dlc+dltt) to the book value of assets (at).

3.3 Institutional Ownership

Data on institutional ownership come from the Thomson Institutional Manager Holdings �le, which

is based on quarterly 13f �lings. Coverage begins in 1980. Each quarter, we sum up the number of

shares of each stock held by 13f �lers and divide by shares outstanding to get institutional ownership

percentages.

3.4 Option-Implied Volatility

Data on option-implied volatility come from OptionMetrics, which computes implied volatility over

di�erent horizons based on traded options of varying maturities. Coverage begins in 1995.

3.5 Earnings Announcements

We use the I/B/E/S detail history �le for data on analyst forecasts as well as the values and dates of

earnings announcements. Coverage begins in 1983. The sample is restricted to earnings announced

on calendar dates when the market is open. Day t refers to the date of the earnings announcement

listed in the I/B/E/S �le. We examine the quarterly forecasts of earnings per share.

The two key variables in our analysis are the nominal surprise for a given earnings announcement
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and the scaled surprise.2 Broadly de�ned, the earnings surprise is the di�erence between announced

earnings and the expectations of investors prior to the announcement. We follow a commonly-used

method in the accounting and �nance literature and measure expectations using analyst forecasts

prior to announcement.3

Following the methodology in Hartzmark and Shue (2018) and related studies of investor re-

actions to earnings announcements, we take each analyst's most recent forecast, thereby limiting

the sample to one forecast per analyst, and then take the median of this number within a certain

time window for each �rm's earnings announcement. In our base speci�cation, we take all analyst

forecasts made between two and thirty days prior to the announcement of earnings. We choose

thirty days to avoid stale information and still retain a large sample of �rms with analyst coverage.

Our results remain qualitatively similar if we use alternative windows of 15 or 45 days prior to

announcement.

We de�ne the nominal earnings surprise as the dollar di�erence between actual earnings and the

median analyst forecast:

nominal surpriseit = actual earningsit −median estimatei,[t−30,t−2]. (2)

We de�ne the scaled earnings surprise as the nominal earnings surprise divided by the share price

of the �rm three trading days prior to the announcement:

scaled surpriseit =

(
actual earningsit −median estimatei,[t−30,t−2]

)
pricei,t−3

. (3)

2We follow the literature on earnings announcements in characterizing earnings news as the surprise relative
to expectations. We focus on surprise rather than levels because whether a given level of earnings is good or bad
news depends on the level relative to investor expectations. Moreover, the �nancial press typically reports earnings
announcement news in terms of how much earnings beat or missed forecasts. Therefore, the earnings surprise is likely
to be the measure of earnings news that is most salient to investors.

3Analysts are professionals who are paid to forecast future earnings. While there is some debate about how
unbiased analysts are (e.g., Hong and Kubik, 2003 and So, 2013), our tests only require that such a bias is not
correlated with the di�erence between the nominal and scaled earnings surprises.
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Most of the existing academic literature exploring return reactions to earnings surprises focus on

the scaled surprise measure. Scaling by price accounts for the fact that a given level of earnings

surprise implies di�erent magnitudes of news shocks depending on the price per share. However,

many media outlets report earnings surprises as the nominal (unscaled) di�erence between actual

earnings and analyst forecasts, and investors may mistakenly pay attention to the nominal surprise.

Therefore we compare how markets react to the nominal and scaled surprise measures. To reduce

the in�uence of outliers, which may be relatively more problematic for the scaled surprise measure

because it is measured as a ratio, we measure both the scaled and nominal surprise as percentile

rank variables within each year-quarter.

We then construct measures of returns over various event windows around the earnings announ-

cement. We measure the direct short-term reaction to the earnings announcement as the �rm's

abnormal return in the window [t− 1, t+1], i.e., the �rm's return from market close on day t− 2 to

market close on t+1, minus the market return over the same period. We can also test for long-run

drift and reversals by examining the �rm's abnormal returns over longer event windows.

4 Results

4.1 Baseline Results

4.1.1 Prices, Total Volatility, Idiosyncratic Volatility, and Market Beta

We begin by exploring how return volatility varies with share price. Using data at the stock-month

level, we estimate the following regression:

log (volit) = β0 + β1log (pricei,t−1) + controls+ τt + εit. (4)
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We regress each stock i's volatility in month t on the stock's nominal share price at the end of the

previous month, calendar-year-month �xed e�ects, and additional control variables. Volatility can

represent total volatility, idiosyncratic volatility, or absolute market beta. We measure volatility

and nominal share price in logarithm form because a simple model of non-proportional thinking

with a constant reference price implies that volatility should change proportionately with the share

price. Control variables can include the log of the �rm's size (measured as total market equity) in

the previous month or indicator variables for 20 size categories based on the market capitalization

of the stock relative to the size breakpoints for each period from the Ken French Data Library. The

sample excludes observations with extreme lagged prices (the bottom and top 1% of prices each

month). To account for correlated observations, we double-cluster standard errors by stock and

year-month.

We present our baseline results in Table 2. Consistent with the predictions from a simple non-

proportional thinking model, we �nd that higher nominal share price is associated with lower total

return volatility. The negative coe�cient on price remains highly signi�cant and stable in magnitude

as we introduce control variables for size (either as the log of lagged market capitalization or with 20

size category indicators based on lagged market capitalization). The results hold in the cross section

(with time �xed e�ects and without stock �xed e�ects) and in the time-series (with both time and

stock �xed e�ects). The economic magnitudes are also quite large. With the full set of control

variables in column (4), a doubling in share price is associated with a 34% decline in volatility in

the cross section and a 27% decline in volatility in the time-series (i.e., within stock over time).

In Table 3, we �nd very similar empirical patterns after replacing the dependent variable with

idiosyncratic volatility and absolute market beta. The economic magnitudes are again large. With

the full set of control variables in column (4), a doubling in share price is associated with 35% decline

in idiosyncratic volatility and a 31% decline in absolute market beta. As discussed previously, we
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use the absolute value of market beta instead of the raw level of beta because non-proportional

thinking should lead to overreaction to market news for low priced stocks, resulting in larger betas

for positive-beta stocks and more negative betas for negative-beta stocks. However, one may be

concerned that stocks with measured betas in the negative range may simply be stocks where beta

is measured with error. To show that this does not drive our results, Appendix Table A1 restricts

the sample to observations with positive estimated market betas. We continue to �nd similar results

in this subsample.

4.1.2 Size and risk

The empirical patterns shown so far are consistent with non-proportional thinking. However, share

prices are not randomly assigned, so an omitted factor could determine both price and volatility.

Our results can already reject one key alternative explanation involving size: It is well-known in

the asset pricing literature that small-cap stocks, i.e., stocks with low market capitalization, tend to

have higher return volatility, idiosyncratic volatility, and market beta. The size-volatility relations

in the data may even be viewed by some as unsurprising, given that it seems plausible that small

stocks may be fundamentally more risky. Since small-cap stocks also tend to have low nominal

share prices, size may simultaneously determine share price and volatility.

However, we showed in Tables 2 and 3 that the coe�cient on lagged share price remains stable

in magnitude and signi�cant after controlling for the logarithm of lagged market capitalization or

after controlling non-parametrically for size with 20 size category indicators. We also see in columns

(2) and (3) of each table that, while size negatively predicts volatility if we do not control for price,

the size-volatility relation �attens toward zero once we control for lagged nominal share price.

As an alternative way to illustrate these results, we note that size is equal to the product of price

and the number of shares. Therefore, we can examine whether the negative volatility-size relation is
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driven by price or the number of shares, by regressing volatility on lagged price and lagged number

of shares. Appendix Table A2 shows that the majority of the negative volatility-size relation is

driven by price.4

We explore the relation between size and volatility in more detail in Figure 1. Panel A shows the

coe�cients from a regression of log volatility on 20 size category indicators (the largest size category

is the omitted one), after controlling for year-month �xed e�ects. As expected, we �nd a strong

negative relation between size and volatility. In Panel B, we report the same set of coe�cients for

the 20 size indicators, after adding a single control variable for the log of the lagged nominal share

price to the regression. We see that the relation between size and volatility �attens dramatically. In

the range between size categories 4 and 20, size continues to negatively predict volatility. However,

the magnitude of the slope shrinks by more than 80 percent. Thus, the results suggest that non-

proportional thinking may explain a signi�cant portion of the well-known size-volatility and size-beta

empirical relation, rather than the reverse.

4.1.3 Robustness and Heterogeneity

Additional Controls

We have already shown that our results are robust to controlling for size. In Table 4, we repeat our

baseline analysis including additional controls that could determine volatility. In column (1), we

begin by again including minimal controls, as in column (1) of Table 2 Panel A. In column (2), we

control for size even more thoroughly than before by controlling for both the logarithm of lagged

market capitalization as well as the 20 size category indicator variables and all interactions between

the two. This set of �exible control variables addresses the possibility that the e�ect of price that we

are estimating when we control for size category indicators is driven by within-size-category variation

4Idiosyncratic volatility is signi�cantly related to the number of shares, but the magnitude of the correlation is
small. Absolute beta is related to the number of shares, controlling for price, but in the opposite direction.
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in size that is correlated with price. Using these �exible size controls, we continue to estimate a

similar coe�cient on price. In column (3), we add an additional control for sales volatility. This

is measured as the standard deviation of year-over-year quarterly sales growth in the four most

recently completed quarters. In column (4) we include a control for the stock's market-to-book

ratio. In column (5) we control for volume turnover, de�ned as the volume in the previous month

divided by shares outstanding. In column (6) we control for leverage, de�ned as debt (current

liabilities + long term debt) divided by the book value of assets. While many of these controls load

strongly, suggesting that they are indeed related to volatility, their inclusion has minimal e�ect on

the estimated price coe�cient. Therefore our results do not, for example, appear to be driven by

low-priced stocks having higher fundamental sales volatility or higher trading volume.

Tick Size

A potential concern with our �ndings is that the negative price-volatility relation may be driven by

tick-size limitations. A tick size is the minimum price movement for a �nancial security. Tick size

as a fraction of share price is larger for stocks with lower nominal share price, which may arti�cially

in�ate the measured volatility of low-priced stocks.

In Figure 2, we explore the shape of the price-volatility relation in more detail, as a way of ruling

out the possibility that tick-size limitations drive our results. We plot the coe�cients of a regression

of volatility on 20 equally spaced bins in nominal share price, controlling for 20 size category bins,

and time �xed e�ects. All plotted coe�cients measure the di�erence in volatility within each share

price bin relative to the omitted bin of 20 (the largest share price). We observe a strong monotonic

negative relation between volatility and share price. The negative relation holds even in the range

of very high nominal share price bins, when tick size limits should have minimal impact. The strong

monotonic pattern in this �gure also shows that our �ndings of a negative relation between volatility
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and nominal share price are unlikely to be driven by a few outlier observations. Rather, the negative

relation holds between any two adjacent nominal price bins.

As another way of addressing tick-size issues, we create an alternative measure of volatility

that takes tick-size into account. Speci�cally, on a day where a stock's price increases from the

previous closing price, we subtract half a tick from that day's closing price. On days where a

stock's price decreases, we add half a tick to that days closing price. These arti�cial prices round

to the actual prices, given tick-size constraints, but compress returns, and therefore volatility, as

much as possible.5 Thus, computing volatility based on the arti�cial prices gives a lower bound of

what true volatility would have been absent tick-size constraints. We expect the di�erence between

actual volatility and this lower-bound to be greatest for low-priced stock. If tick-size e�ects drive

our results, the price-volatility relation should disappear when we use this conservative alternative

volatility measure. However, Table 5 Panel A shows that, in fact, we continue to �nd similar results

with this alternative volatility measure.

Zero Leverage Subsample

Although we control for leverage in Table 4, one may still be concerned that our �ndings are driven

by a negative relation between priced and leverage, and a positive e�ect of leverage on volatility.

To further rule out this possibility, in Table 5 Panel B, we limit the sample to include only stocks

associated with �rms with zero debt (current liabilities + long term debt) reported in their most

recent quarterly �nancial statements. We continue to �nd similar results in this subsample. Note

that these results also point away from leverage as a complete explanation for the �leverage e�ect,�

which we discuss in later sections.6

5Tick size on NYSE, AMEX, and NASDAQ was 1/16 prior to 2001 when it became 0.01.
6We acknowledge that even �rms with zero debt may still have operating leverage, which may increase the risk

of equity. It is not the goal of this paper to show that leverage cannot contribute to a leverage e�ect. Rather, we will
argue in later sections that the leverage e�ect can also be explained by non-proportional thinking.
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Institutional Ownership

Institutional investors may be more sophisticated than non-institutional investors and thus less likely

to su�er from non-proportional thinking. If so, the price-volatility relation should be weaker for

stocks with higher institutional ownership. To explore this, we repeat our baseline analysis, allowing

the e�ect of price to interact with institutional ownership. As is standard in the literature, we de�ne

institutional ownership as the percent of outstanding shares reported to be held by institutions in

quarterly 13f �lings.7 The results are shown in Table 6. Consistent with the idea that institutional

investors are more sophisticated, we estimate a positive coe�cient on the interaction term. Thus,

volatility declines with price less when a stock has higher institutional ownership. The magnitude

of the coe�cient implies that as a stock moves from 0% institutional ownership to 100%, the e�ect

of price on volatility is reduced by approximately 44%.

This analysis also addresses another potential alternative explanation for our results, which is

that lower-priced stocks may be held by unsophisticated noise traders or speculators who generate

high volatility for reasons unrelated to non-proportional thinking. Table 6 shows that, indeed, stocks

are more volatile when held be more unsophisticated investors, as we estimate a negative coe�cient

on the uninteracted institutional ownership variable. However, even controlling for this, the e�ect

of price remains. That is, even among stocks with the same institutional ownership, lower-priced

stocks are still more volatile.

Size Subsamples

While we have controlled for size to ensure that the estimated relation between price and volatility

is not actually a size-volatility relation, we have not examined how the price-volatility relation

7The institutional ownership variable is updated quarterly, while our observations are at the monthly level. As
before, we double cluster standard errors by stock as well as year-month. The stock clustering should address the
mechanical serial correlation in institutional ownership induced by the quarterly updating (as well as any other source
of serial correlation in the error term of a given stock over time).
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varies with size. In Table 7, we repeat our baseline analysis in 20 subsamples based on our 20 size

categories. These size category bins come from Ken French's ME Breakpoints �le. The breakpoints

for a given month are based on the size distribution of stocks traded on the New York Stock

Exchange. In particular, each group corresponds to every �fth percentile. However, observations

in our data are not equally distributed across the size categories, because our sample includes all

stocks traded on the NYSE, AMEX, and NASDAQ exchanges.

As can be seen, our main �nding is not merely a �micro-cap phenomenon� or even a �small-cap

phenomenon.� The negative relation between price and volatility continues to hold even among

stocks in the top 5th percentile of the NYSE size distribution. Not surprisingly, though, the mag-

nitude of the volatility-price relation does decline with size, consistent with mispricing being less

prevalent for large cap stocks which may su�er less from limits to arbitrage.

Time Period Subsamples

Finally, in Table 8, we explore how the price-volatility relation has changed over time by repeating

our baseline analysis in di�erent time period subsamples corresponding to each decade since the

1920s, up until the end of our sample period in 2016. We �nd that the coe�cient is relatively stable

across these di�erent time periods and there are no secular trends. Thus, it does not seem that the

relation has disappeared in recent year or is weakening over time. This also serves as additional

evidence that tick-size limitations do not drive our results, because tick sizes have declined over

time.

4.1.4 Short Run Under- and Overreaction and Long Run Correction

For a given news shock, our simple model predicts that stock returns for low priced stocks will

overreact in the short run, and reverse in the long run as the mispricing is corrected. We also
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predict that high priced stocks will underreact to the news in the short run, and then drift in the

direction of the news in the long run as the mispricing is corrected.

We test these predictions using market-level news shocks. For the same large market movement

in a given month, we expect that higher priced stocks will move less in the direction of the shock

in the short run, and drift more in the direction of the market shock in the long run, all else equal.

Thus, we estimate the following regression:

ri,[t+a,t+b] = β1log(pricei,t−1)× rmkt,t + controls+ εit

We limit the sample to observations in which the absolute market return in month t exceeds

10%. We regress �rm stock returns over various time horizons on the interaction between market

returns in month t and the stock's share price in month t − 1. We expect β1 to be negative in

the time interval of (and shortly after) the market news shock, and we expect β1 to be positive

in the time interval further away from the market news shock. To verify that di�erences in return

reactions to market shocks are due to price rather than size (which is correlated with price), we also

control for the interaction between the market return in month t and 20 size category indicators.

In an ideal test, we would isolate periods in which there was major market news in month t and no

news in the months thereafter. In that case, we could attribute �rm returns over the long run as

continued drift or reversal with respect to the market news released in month t. In reality, market

news shocks arrive continuously and may be serially correlated. Therefore, we also control for the

interaction between future market movements (over the same horizon as the dependent variable)

and share price in t− 1 and size categories in t− 1.

The results are shown in Table 9. As predicted by the model, we �nd that β1 is negative for

short run horizons. In other words, higher priced stocks move signi�cantly less in the direction of
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the market return shock in the short run (in the month of the market news shock, as well as in

the 2 months after). Starting at around month 3 after the large market new shock, the mispricing

begins to correct (β1 becomes positive), with a signi�cant correction in the period from months 7

to 9 after the shock.

4.1.5 Past returns

In this section, we explore the relation between a stock's volatility and past returns. If a stock has

experienced negative past returns, then it's current share price is more likely to be low relative to

the reference price in the minds of investors. Therefore, we expect a negative relation between past

returns and volatility. Examining past returns over various windows also allows us to see if the

evidence is consistent with a model in which investors use a stock's past share price as a reference

price. To explore the rate at which investors update a stock's reference price level, we look at the

relation between volatility and the stock's past returns over various return windows. By holding

�xed the total return over various time horizons, we can vary the rate at which prices have changed.

Table 10 shows the regression results. We estimate the following regression:

log (voli,t) = β0 + β1ri,[t−x,t−1] + τt + εit, (5)

where rit−x,t−1 represents past returns over the past 2, 4, 6, 8, 10, and 12 month windows. Consis-

tent with non-proportional thinking, we �nd a strong negative relation between past returns and

volatility. We also �nd that the negative relation between past returns and subsequent realized

volatility becomes weaker the farther back the return window is extended. In other words, a stock

that has doubled in the last two months is signi�cantly more volatile than a stock that doubled

in value over the last six months, which is in turn more volatile than a stock that has doubled in

value over the the last year. These results suggest that investors gradually and incompletely update
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reference prices toward the current share price over time.

These results also show that non-proportional thinking may contribute to the well-known �le-

verage e�ect,� in which volatility is negatively related to past returns (e.g., Black, 1976). While a

number of papers including Christie (1982) argue that the negative relation between returns and

volatility may be due to leverage (as asset values decline and debt stays approximately constant, the

equity becomes more leveraged and therefore more risky), other research (e.g., Figlewski and Wang,

2001) cast doubt on the leverage explanation for the leverage e�ect. We show that non-proportional

thinking o�ers an alternative explanation for this empirical pattern: as prices decline, volatility

increases because investors react to news in dollar units based upon a higher reference price and

thereby overreact in percentage units.

4.2 Stock splits

Despite the fact that we have controlled by many observable factors that could a�ect volatility, it

remains possible that omitted variables may drive the negative relation between price and volatility.

To better account for potential omitted factors, we conduct a regression discontinuity and event

study around stock splits. While stock splits are not completely randomly assigned across �rms, the

fundamentals of each �rm are unlikely to change exactly on the day of each stock split. Therefore,

we can credibly attribute changes in volatility immediately after the split to the change in share

price.

4.2.1 Daily Analysis

We begin with granular daily stock data to estimate a regression discontinuity around the date of the

stock split. For the regression discontinuity, we change our measure of volatility from the standard

deviation of daily returns within each calendar month to the scaled intraday price range, de�ned
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as the di�erence between the intraday high and low, scaled by the share price at market close on

the previous day. We omit the actual day of the split from the analysis, as it is not clear whether

the split takes place at the beginning of the trading day or the end. 8We begin by considering any

positive stock split in which one old share is converted into two or more new shares (the results

remain similar if we restrict the de�nition of an event to 2-for-1 stock splits, the most common type

of split).

In Figure 3 (regression results in Table 11), we �nd that the scaled intraday price range increases

by 0.015 immediately after the split, an approximate 40 percent increase relative to the pre-split

scaled intraday price range. The jump in intraday price range persists with a small decay over

the next 40 trading days. These magnitudes are very similar regardless of the exact regression

discontinuity method that we adopt. We �t local linear or local quadratic regressions on either side

of the regression discontinuity, using either a triangular or Epanechnikov kernel, and the rule-of-

thumb optimal bandwidth.

4.2.2 Monthly Analysis

We also conduct event studies examining changes in total volatility, idiosyncratic volatility, and

absolute beta around stock splits using monthly data. To explore how these measures of volatility

change after splits, we estimate the following regression:

log (volit) = β0 + β1Postit + τt + νi + εit. (6)

Observations at the stock-month level, and the sample is limited to the six months before and after

a split.9 We again consider any positive stock split in which one old share is converted into two or

8In principle, one could also use intraday trading data from TAQ to address this question, but those data are
only available for more recent years and we see no reason that using such data would lead to di�erent conclusions.

9We limit the sample to splits that are neither preceded by another split in the previous 12 months, nor followed
by another split in the subsequent 12 months, so that our estimation windows do not overlap with other splits. The
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more new shares. The coe�cient of interest is β1, which measures the di�erence in volatility in the

six months after the split relative to the six months before. If the drop in share prices following a

stock split leads to an increase in volatility, we expect that B1 > 0. To examine how volatility varies

with event time in greater detail, we also present results in which the Postit indicator is replaced

with event-month indicators. In all speci�cations, we control for year-month and stock �xed e�ects

and double cluster standard errors by year-month and stock.

We �nd that volatility rises signi�cantly after stock splits. Table 12 shows that total volatility,

idiosyncratic volatility, and absolute beta increase by approximately 20 percent in the 6-month

period after the split relative to the 6-month period before the split. If we introduce event month

indicators for the post-split period as in the even-numbered columns in Table 12, we �nd that

volatility sharply increases in the �rst month after the stock split and remains high relative to the

pre-period for the next 6 months. There is also evidence of a monotonic decay over time: the initial

jump in volatility in the �rst month after the stock split falls by approximately 21% over the next

6 months.

In Figure 4 Panel A, we explore volatility around stock splits in more detail. We plot the

coe�cients for each month in event time, relative to the omitted category of 6 months prior to

the split. We omit the split month from these �gures, as split months contain both pre-split and

post-split days. We �nd that there is a slight pre-trend in that volatility rises in the six months

leading up to the split. This pretend is consistent with the view that splits are not entirely random.

Firms choose to engage in stock splits following periods of good performance, which may coincide

with small increases in volatility. However the direction and magnitude of the pre-trend in volatility

cannot explain the sudden large jump in volatility after the split, nor the slow monotonic decay in

volatility over the next 6 months.

same sample restrict was applied to the earlier daily analysis.
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In Figure 4 Panel B, we similarly explore patterns of volatility following reverse stock splits,

de�ned as events in which two more stocks are converted to one stock. We expect volatility to

decline following reverse stock splits because the nominal share price increases by two-fold or more

following the reverse split. Consistent with these predictions, we �nd that volatility drops by more

than 20 percent in the month following reverse splits and the drop remains persistent over the next

6 months. As with positive splits (which we refer to as �splits� for short), we observe a positive

pre-trend in volatility in the months leading up to the split. However, the direction and small

absolute magnitude of the pre-trend in volatility cannot explain the sudden and persistent drop in

volatility following the reverse split.

4.2.3 Addressing Alternative Explanations

A potential alternative explanation for our results is that splits, and low share prices in general, may

draw a di�erent investor base that is more speculative and retail-dominated, which may directly push

up volume. A change to the investor base is unlikely to explain our results for four reasons. First,

we observe an immediate jump in volatility after the split, even though the investor base is unlikely

to change dramatically in a single day. Second, simple models of speculative investors predict

higher idiosyncratic volatility Brandt et al. (2009), but not necessarily overreaction to market news.

However, we �nd a large increase in absolute beta following splits in Table 12, which is consistent

with non-proportional thinking leading to overreaction to market news for low-priced stocks. Third,

speculation should lead to increased volume turnover (de�ned as number of shares traded divided by

total share �oat) following the split. Instead, we �nd in Figure 5 that there is a sharp and persistent

decline in volume turnover following splits and the opposite pattern for reverse splits. This change

in volume is instead consistent with the view that investors naively tend to trade a �xed number of

shares for each stock, e.g., 100 shares. Following a split, the share �oat doubles, so the number of
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shares traded relative to the �oat will decline after splits and rise after reverse splits. Fourth, we can

directly check for changes in investor base after splits. We compare institutional ownership before a

split (based on the last observed 13f �ling leading up to the split) and after a split (based on the �rst

observed 13f �ling following the split). In Table 13, we �nd that institutional ownership declines

very slightly (from 47.3% to 46.3%) and the decline is not statistically signi�cant. Moreover, it

seems implausible that a 1% decline in institutional ownership would account for a 20% or more

increase in volatility.

Another potential alternative explanation is that splits draw increased media attention which

may lead to increased volatility. We �nd this explanation implausible because the change in volatility

after a split persists for many months, so it is unlikely to be caused by a temporary increase in media

coverage. Further, investor attention should also increase following reverse splits which also receive

signi�cant media coverage, and yet we �nd in Figure 4 Panel B that volatility declines following

these reverse stock splits, consistent with a non-proportional thinking model.

One may also be concerned that splits are timed in way that coincides with fundamental changes

in �rm volatility. Again, we argue that it is unlikely that �rm fundamentals can change quickly

over the course of a single day after the split. We also directly check for changes in fundamental

volatility. In Table 13, we compare mean sales volatility before a split (based on the the last four

quarters leading up to the split) and after a split (based on the �rst four quarters following the split).

As can be seen, mean sales volatility is very similar before and after a split, and the di�erence is

not statistically signi�cant.

Finally, one may be concerned that the results relating to splits are driven by a handful of small

cap stocks. In Appendix Figures A1 and A2, we show that similar empirical patterns exist for

intraday price range, total volatility, idiosyncratic volatility, absolute beta, and volume turnover for

a subsample restricted to large cap stocks in size categories 10 through 20, according to the Fama
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French NYSE size cuto�s.

4.2.4 Implied Volatility

Given the above �ndings, we are also interested in the extent to which option traders anticipate the

change in volatility following splits and how quickly they update their beliefs about volatility after

the split. If option traders are very sophisticated, we expect that implied volatility (which re�ects

option traders' expectations of volatility over some future period) should increase prior to a split,

as splits are usually announced in advance. While many of the splits in our sample either pre-date

the OptionMetrics data or are associated with stocks with few traded options, we are able to obtain

option data for 921 split events. Panel A of Figure 6 plots 30-day implied volatility and 30-day

realized volatility around splits.10 Implied volatility is calculated as a linear combination of implied

volatilities from call options with approximate 30-day maturities, and realized volatility represents

the realized volatility over the same 30-day window. Panel B plots the log di�erence between these

two lines. We �nd that option traders anticipate some increase in volatility but undershoot by a

substantial margin. After the split, the 30-day implied volatility remains below the 30-day realized

volatility for over 100 trading days and then converges. This shows that option traders do not fully

anticipate the change in volatility around splits, and they do not immediately notice ex-post that

volatility has increased.

In Panel C, we �nd similar results using implied volatility estimated from data on put options.

Overall, the results suggest that a pro�table trading strategy that exploits non-proportional thinking

would involve going long option straddles (equivalent to buying both a call and put option) prior

to pre-announced split dates. Option straddles pay o� when realized volatility exceeds implied

10The �gure displays a a cyclical pattern that repeats approximately every three months. A possible explanation
for this pattern is that volatility and implied volatility increase around earnings announcements which occur once
each quarter. Splits are often pre-announced during the earnings seasons and occur one month later. The �gure also
shows that on average, implied volatility exceeds realized volatility. This is a general feature of options data and may
be explained by investors demanding compensation for risk.
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volatility, which is what we observe in the data following stock splits.

Because OptionMetrics data is only available for larger and more liquid stocks, these results also

show that our �ndings related to splits are not a small-cap phenomenon. Even for large cap stocks

with options data, realized volatility jumps up signi�cantly around splits, and implied volatility also

increases, albeit with a lag consistent with option traders reacting with a delay.

4.3 Reactions to News Reported in Nominal Units

So far, we have shown empirical support for a simple model of non-proportional thinking in which

investors overreact to news for lower priced stocks. The news shocks considered could be �rm-

speci�c, such as the announcement of a CEO transition or a new product, or economy-wide, such

as the announcement of a trade war with China. In this section, we explore a related prediction

from a simple model of non-proportional thinking. We hypothesize that non-proportional thinking

may distort investors' reactions to news if the news itself is reported in nominal rather than the

appropriate proportional units. In the case of �rm earnings announcements, the right measure of

the magnitude of the news is likely to be the nominal value of the earnings surprise, scaled by the

�rm's price just before the news is released. For example, earnings news in which a �rm beats

analyst expectations by 10 cents per share is a greater positive surprise if the �rm's share price is

$20/share than if the �rm's share price is $30/share.

However, the �nancial press commonly reports the nominal earnings surprise of 10 cents per

share, without scaling by share price. Therefore, non-proportional thinking may lead investors to

react to the nominal earnings surprise instead of, or in additional to, the scaled earnings surprise.

To test this prediction, we estimate the following regression:

CARi,[t−1,t+1] = β0 + β1nominal surpriseit + β2scaled surpriseit + εit
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CARi,[t−1,t+1] is the �rm's cumulative abnormal return over the three-day window around the

earnings announcement. If markets are fully rational, we expect to �nd that β2 > 0 because bigger

real surprises should correspond to larger return reactions, and β1 to be close to zero, because the

nominal surprise should contain no information beyond the scaled surprise.11 On the other hand,

non-proportional thinking predicts that β1 > 0.

When estimating this regression, we measure the nominal surprise and the scaled surprise as

percentile rankings for two reasons. First, percentile rankings allows for a direct comparison of

the relative magnitudes of the return reaction to each type of earnings surprise. Second, percentile

rankings reduce the potential in�uence of outliers, particularly for the measure of the scaled surprise

which can take on very large values when the denominator approaches zero. Expressing earnings

surprise in ranked form also follows the convention in the earnings literature (e.g., Dellavigna and

Pollet, 2009; Hartzmark and Shue, 2018).

The �rst panel of Table 14 presents the results. We �nd that investors indeed react strongly to

nominal surprises. If fact, the return reaction to the nominal surprise is slightly larger in magnitude

and more statistically signi�cant than the reaction to the scaled surprise when both are measured

as percentiles. These results hold in the full sample, as well as the subsamples for large-cap and

small-cap �rms in columns (3) and (4), respectively. This shows that these patterns are not driven

only by small �rms. However, the relative return reaction to the nominal surprise is much larger for

the sample of small-cap �rms, consistent with a story in which the investor base for small-cap �rms

is less sophisticated or a story in which arbitrage frictions or shorting constraints are more likely

to apply to small cap �rms. In columns (5) and (6), we show that the same patterns hold before

and after the year 2001. In the more recent time period, I/B/E/S data records the announcement

11If markets are rational and the scaled surprise variable is a su�cient statistics for news, it is still possible that
the coe�cient on nominal surprise would be non-zero. It could be that the rational relation between CAR and scaled
surprise is non-linear. Since the nominal surprise is correlated with the scaled surprise, β1 may be non-zero to pick
up part of this nonlinear relation. To address this possibility, we focus on long run reversals, which provide more
direct evidence of mispricing and a subsequent correction.
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date and time of earnings announcement with greater accuracy. Finding similar results in the more

recent sample period shows that these patterns cannot be explained by date recording errors.

If prices correctly re�ect real news in the long run, we expect the initial return reaction to the

nominal earnings surprise to reverse over time as the mispricing is corrected. Because investors

react to the nominal earnings surprise, they also underreact to the real measure of news (the

scaled earnings surprise), so we expect the scaled earnings surprise to predict future drift in returns.

Consistent with these predictions, we �nd that returns continue to drift in the direction of the scaled

earnings surprise and against the direction of the nominal earnings surprise in the long run. Table

14 Panel B shows the long run return reactions to the scaled surprise and the nominal surprise. We

�nd over the course of 100 trading days after earnings announcement that the return reaction to

the nominal surprise converges toward zero and the return reaction to the scaled surprise increases

in magnitude, consistent with a correction of the initial overreaction to the nominal surprise and

underreaction to the scaled surprise.

We also note an interesting divergence in predictions regarding how non-proportional thinking

a�ects over- and underreaction to news. For the general class of news that is not reported in distorted

nominal units, non-proportional thinking predicts underreaction to the news for high priced stocks

and overreaction for low priced stocks. However, the direction of the predictions can potentially

�ip in situations in which the news is itself reported in nominal units, depending on whether the

nominal amount is too big or small relative to the real news. In the case of earnings announcements,

the real news is the scaled earnings surprise and the reported news is the nominal earnings surprise.

The reported news (e.g. 10 cents per share) is �too big� relative to the real news (e.g. 10 cents per

share divided by share price) for �rms with high share prices. Thus, we expect overreaction to the

real earnings news for high priced �rms in the case of earnings announcements. This contrasts with

our general prediction, which is that returns for high priced �rms underreact to news.
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5 Conclusion

We hypothesize that investors in �nancial markets engage in non-proportional thinking�they think

that news should correspond to a dollar change in price rather than a percentage change in price,

leading to return underreaction for high-priced stocks and overreaction for low-priced stocks. Con-

sistent with a simple model of non-proportional thinking, we �nd that total volatility, idiosyncratic

volatility, and absolute market beta are signi�cantly higher for stocks with low share prices or ne-

gative past returns. To identify a causal e�ect of price, we show that volatility increases sharply

following stock splits and drops following reverse stock splits. The economic magnitudes are large:

non-proportional thinking can explain a signi�cant portion of the �leverage e�ect� puzzle, in which

volatility is negatively related to past returns, as well as the volatility-size and beta-size relations in

the data. We also show that non-proportional thinking distorts investor reactions to news that is

itself reported in nominal rather than the proper scaled units. Investors react to nominal earnings

per share surprises, after controlling for the earnings surprise scaled by price. The reaction to the

nominal earnings surprise reverses in the long run, consistent with correction of mispricing.

Our analysis sheds light on the determinants of volatility in �nancial markets. Our results suggest

that non-proportional thinking may be an important determinant of cross-sectional variation in

volatility and that well-known asset pricing facts such as the leverage e�ect and the size-volatility and

size-beta relations in the data can be reinterpreted through the lens of non-proportional thinking.

Our analysis also o�ers a new explanation of over- and under-reaction to news and subsequent drift

patterns in asset prices. The existing behavioral �nance literature has mainly focused on limited

attention or belief errors regarding the persistence of news shocks or the strength of one's priors to

explain these patterns. Non-proportional thinking o�ers a complementary explanation: over and

under-reaction to news and consequent drift can also be caused by investors thinking about asset

values and news in the wrong units.
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Figure 1
Size and Volatility

This �gure explores the relation between size (market capitalization) and volatility. Panel A shows the
coe�cients from a regression of log volatility on 20 bins for size (the largest size bin is the omitted category),
after controlling for year-month �xed e�ects. In Panel B, we report the same set of coe�cients for the 20
bins representing size, after adding in a single additional control variable for the log of the lagged nominal
share price. The dots represent the coe�cient estimates and the lines represent 95% con�dence intervals.
Standard errors are clustered by stock and year-month.
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Figure 2
Shape of Volatility-Price Relation

This �gure explores the shape of the volatility-price relation by binning lagged prices into 20 equally spaced
categories and repeating the regression from Panel A of Table 2, column (4), replacing the continuous
Log(Lagged Price) variable with these category dummies. The resulting coe�cients are plotted with 95%
con�dence intervals. Category 20 is omitted. Standard errors are clustered by stock and year-month.
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Figure 3
Regression Discontinuity: Scaled Intraday Price Range Around Stock Splits

In this �gure, we explore the pattern of volatility around 2-for-1 stock splits or greater (e.g., 3-for-1, 4-for-1,
etc.). We examine 45 days before and after the split. The outcome, scaled intraday price range, is de�ned
as di�erence between the intraday high and intraday low, normalized by the lagged closing price. The thick
lines represent non-parametric estimates of the mean on a given day, estimated using a local linear regression
with a triangular kernel and MSE-optimal bandwidth. The thin lines represent 95% con�dence intervals.
The dot shows raw means for each event day.
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Figure 4
Event Study: Volatility Around Stock Splits and Reverse Stock Splits

Panel A shows total volatility around 2-for-1 stock splits or greater (e.g., 3-for-1, 4-for-1, etc.). Panel B
shows total volatility around reverse stock splits: 1-for-2 stock splits or greater (e.g., 1-for-3, 1-for-4, etc.).
We plot the coe�cients for each month in event time, relative to the omitted category of 6 months prior to
the split. The regressions contain stock and year-month �xed e�ects. The dots represent the point estimates
and the lines represent 95% con�dence intervals. Standard errors are clustered by stock and month.
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Figure 5
Event Study: Volume Around Stock Splits and Reverse Stock Splits

Panel A shows the pattern of volume around 2-for-1 stock splits or greater (e.g., 3-for-1, 4-for-1, etc.). Panel
B shows the pattern of volume around reverse stock splits: 1-for-2 stock splits or greater (e.g., 1-for-3, 1-for-
4, etc.). Volume turnover is number of shares traded in each month divided by the total number of shares
outstanding. We plot the coe�cients for each month in event time, relative to the omitted category of 6
months prior to the split. The regressions contain stock and month �xed e�ects. The dots represent the
point estimates and the lines represent 95% con�dence intervals. Standard errors are clustered by stock and
month.
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Figure 6
Implied Volatility Around Splits

Panel A plots 30 day implied volatility and 30 day realized volatility from call options. 30 day implied
volatility is calculated by OptionMetrics as a linear combination of implied volatilities from call options
with approximately 30-day maturities. 30 day realized volatility represents the realized volatility over the
subsequent 30-day period. Panel B plots the log di�erence of these two lines. Panel C plots a similar series
as Panel A using data from put options. Event time is trading days relative to the split date. The sample
is limited to 2-for-1 stock splits or greater (e.g., 3-for-1, 4-for-1, etc.). It includes 921 �rm-split events from
1995-2015 where data are available from OptionMetrics.

(a) Implied and Realized Volatility
(Call Options)
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Table 2
Baseline Results: Total Volatility

This table explores how return volatility varies with the share price. Using data at the stock-month level,
we estimate the following regression:

log (volit) = β0 + β1log (pricei,t−1) + controls+ τt + εit.

We regress each stock i's volatility in month t on the stock's nominal share price at the end of the previous
month, indicator variables for 20 size categories using the stock's market capitalization at the end of the
previous month relative to other stocks in the same time period, calendar-year month �xed e�ects, and stock
�xed e�ects. Volatility is estimated using daily returns from month t. The sample excludes observations with
extreme lagged price (the bottom and top 1%). To account for correlated observations, we double-cluster
standard errors by stock and year-month. *,**, and *** denote statistical signi�cance at the 10%, 5%, and
1% level, respectively.

Panel A: Cross-Section

Log(Total Volatility)

(1) (2) (3) (4)

Log(Lagged Price) -0.326∗∗∗ -0.332∗∗∗ -0.339∗∗∗

(0.00339) (0.00446) (0.00405)

Log(Lagged Size) -0.146∗∗∗ 0.00431
(0.00235) (0.00311)

Month FE Yes Yes Yes Yes

Size Category FE No No No Yes

R-squared 0.442 0.328 0.442 0.445
Observations 3,254,302 3,254,302 3,254,302 3,254,302

Panel B: Time Series

Log(Total Volatility)

(1) (2) (3) (4)

Log(Lagged Price) -0.260∗∗∗ -0.261∗∗∗ -0.274∗∗∗

(0.00395) (0.00477) (0.00403)

Log(Lagged Size) -0.160∗∗∗ 0.000476
(0.00334) (0.00383)

Stock FE Yes Yes Yes Yes

Month FE Yes Yes Yes Yes

Size Category FE No No No Yes

R-squared 0.588 0.565 0.588 0.588
Observations 3,254,302 3,254,302 3,254,302 3,254,302
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Table 3
Baseline Results: Idiosyncratic Volatility and Absolute Market Beta

This table repeats the analysis of Table 2 Panel A, using idiosyncratic volatility and absolute market beta
as the outcome variable. To account for correlated observations, we double-cluster standard errors by stock
and year-month. *,**, and *** denote statistical signi�cance at the 10%, 5%, and 1% level, respectively.

Panel A: Idiosyncratic Volatility

Log(Idiosyncratic Volatility)

(1) (2) (3) (4)

Log(Lagged Price) -0.357∗∗∗ -0.330∗∗∗ -0.345∗∗∗

(0.00317) (0.00432) (0.00397)

Log(Lagged Size) -0.171∗∗∗ -0.0211∗∗∗

(0.00216) (0.00308)

Month FE Yes Yes Yes Yes

Size Category FE No No No Yes

R-squared 0.469 0.363 0.471 0.474
Observations 3,254,302 3,254,302 3,254,302 3,254,302

Panel B: Absolute Market Beta

Log(|Beta|)

(1) (2) (3) (4)

Log(Lagged Price) -0.109∗∗∗ -0.334∗∗∗ -0.305∗∗∗

(0.00565) (0.00642) (0.00538)

Log(Lagged Size) 0.0232∗∗∗ 0.174∗∗∗

(0.00383) (0.00468)

Month FE Yes Yes Yes Yes

Size Category FE No No No Yes

R-squared 0.056 0.047 0.085 0.085
Observations 3,254,302 3,254,302 3,254,302 3,254,302
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Table 5
Robustness: Tick-Size Adjusted Volatility and Zero Leverage Subsample

Panel A repeats the analysis of Table 2 Panel A adjusting for tick-size e�ects. Speci�cally, on a day where
a stock's price increases from the previous closing price, we subtract half a tick from that day's closing
price. On days where a stock's price decreases, we add half a tick to that days closing price. We then
calculate volatility based on these arti�cial prices. Panel B repeats the analysis of Table 2 Panel A, on
the subsample of stocks with zero. Zero leverage �rms are ones with zero current liabilities and zero long
term debt (not including missing values as zeros). To account for correlated observations, we double-cluster
standard errors by stock and year-month. *,**, and *** denote statistical signi�cance at the 10%, 5%, and
1% level, respectively.

Panel A: Tick-Size Adjusted Volatility

Log(Total Tick-Size Adjusted Volatility)

(1) (2) (3) (4)

Log(Lagged Price) -0.268∗∗∗ -0.266∗∗∗ -0.275∗∗∗

(0.00348) (0.00460) (0.00434)

Log(Lagged Size) -0.122∗∗∗ -0.00157
(0.00231) (0.00325)

Month FE Yes Yes Yes Yes

Size Category FE No No No Yes

R-squared 0.358 0.285 0.358 0.361
Observations 3,254,302 3,254,302 3,254,302 3,254,302

Panel B: Zero Leverage Subsample

(1) (2) (3)
Log(Total Volatility) Log(Idiosyncratic Volatility) Log(|Beta|)

Log(Lagged Price) -0.286∗∗∗ -0.290∗∗∗ -0.256∗∗∗

(0.00775) (0.00772) (0.0100)

Month FE Yes Yes Yes

Size Category FE Yes Yes Yes

R-squared 0.337 0.364 0.093
Observations 224,571 224,571 224,571
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Table 10
Volatility and Past Returns

This table shows regressions of the form:

log (volit) = β0 + β1ri,[t−x,t−1] + τt + εit,

where returnsi,[t−x,t−1] represents past returns from t−x to t−1. Volatility is estimated using daily returns
from month t. The sample excludes observations with extreme lagged priced (the bottom and top 1%). To
account for correlated observations, we double-cluster standard errors by stock and year-month. *,**, and
*** denote statistical signi�cance at the 10%, 5%, and 1% level, respectively.

Panel A: Cross Section

Log(Total Volatility)

(1) (2) (3) (4) (5) (6)
2-Month 4-Month 6-Month 8-Month 10-Month 12-Month

Lagged Return -0.114∗∗∗ -0.0952∗∗∗ -0.0835∗∗∗ -0.0745∗∗∗ -0.0647∗∗∗ -0.0557∗∗∗

(0.0253) (0.0204) (0.0158) (0.0126) (0.0106) (0.00899)
Month FE Yes Yes Yes Yes Yes Yes

R-squared 0.184 0.185 0.185 0.185 0.186 0.186
Observations 2,966,196 2,966,196 2,966,196 2,966,196 2,966,196 2,966,196

Panel B: Time Series

Log(Total Volatility)

(1) (2) (3) (4) (5) (6)
2-Month 4-Month 6-Month 8-Month 10-Month 12-Month

Lagged Return -0.102∗∗∗ -0.0811∗∗∗ -0.0684∗∗∗ -0.0595∗∗∗ -0.0512∗∗∗ -0.0438∗∗∗

(0.0117) (0.00986) (0.00773) (0.00601) (0.00500) (0.00423)
Stock FE Yes Yes Yes Yes Yes Yes
Month FE Yes Yes Yes Yes Yes Yes

R-squared 0.547 0.547 0.548 0.548 0.548 0.548
Observations 2,966,196 2,966,196 2,966,196 2,966,196 2,966,196 2,966,196
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Table 11
Regression Discontinuity: Scaled Intraday Price Range Around Stock Splits

In this table, we explore the pattern of volatility around 2-for-1 stock splits or greater (e.g., 3-for-1, 4-
for-1, etc.). We examine 45 days before and after the split. The outcome, scaled intraday price range, is
de�ned as di�erence between the intraday high and intraday low, normalized by the lagged closing price.
Control functions on each side of the cuto� are estimated non-parametrically using local linear regression.
Bandwidths are selected using one common MSE-optimal bandwidth selector, two di�erent MSE-optimal
bandwidth selectors on each side of the cuto�, or one common MSE-optimal bandwidth selector for the sum
of regression estimates (as opposed to the di�erence thereof). The kernel is either Triangular or Epanechnikov
as labeled. The estimated coe�cient represents the size of the discontinuity at the split date, as illustrated
in Figure 3.

Scaled Intraday Price Range

(1) (2) (3) (4)

Discontinuity at Split 0.0146∗∗∗ 0.0149∗∗∗ 0.0146∗∗∗ 0.0150∗∗∗

(0.000529) (0.000984) (0.000560) (0.00107)

Degree Local Poly 1 2 1 2
Bandwidth 7.074 7.074 6.160 6.160
Kernel Triangular Triangular Epanechnikov Epanechnikov
Observations 646,700 646,700 646,700 646,700
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Table 12
Volatility Around Stock Splits

To explore how volatility changes after splits, we estimate the following regression:

log (volit) = β0 + β1Postit + τt + νi + εit.

The regression sample uses observations at the stock-month level. We consider any positive stock split in
which one old share is converted into two or more new shares. The month of a stock split counts as event
date 0, and the sample is restricted to observations in the window [t − 6, t + 6] around the event date,
conditional on the observation not being within 12 months of another stock split for the same stock. To
examine how volatility varies with event time in greater detail, we also present results in which the Postit
indicator is replaced with event-month indicators. In all speci�cations, we control for year-month and stock
�xed e�ects and double cluster standard errors by stock and time. To account for correlated observations,
we double-cluster standard errors by stock and year-month. *,**, and *** denote statistical signi�cance at
the 10%, 5%, and 1% level, respectively.

Log(Total Volatility) Log(Idiosyncratic Volatility) Log(|Beta|)

(1) (2) (3) (4) (5) (6)

Post Split 0.216∗∗∗ 0.214∗∗∗ 0.230∗∗∗

(0.00452) (0.00467) (0.00836)

Post Split (0 Month) 0.225∗∗∗ 0.225∗∗∗ 0.230∗∗∗

(0.00553) (0.00566) (0.0139)

Post Split (1 Month) 0.262∗∗∗ 0.257∗∗∗ 0.295∗∗∗

(0.00588) (0.00608) (0.0130)

Post Split (2 Month) 0.230∗∗∗ 0.228∗∗∗ 0.251∗∗∗

(0.00564) (0.00579) (0.0136)

Post Split (3 Month) 0.210∗∗∗ 0.206∗∗∗ 0.234∗∗∗

(0.00606) (0.00620) (0.0137)

Post Split (4 Month) 0.205∗∗∗ 0.202∗∗∗ 0.214∗∗∗

(0.00580) (0.00598) (0.0130)

Post Split (5 Month) 0.192∗∗∗ 0.190∗∗∗ 0.195∗∗∗

(0.00611) (0.00624) (0.0145)

Post Split (6 Month) 0.185∗∗∗ 0.184∗∗∗ 0.184∗∗∗

(0.00612) (0.00621) (0.0142)

Month FE Yes Yes Yes Yes Yes Yes

Stock FE Yes Yes Yes Yes Yes Yes

R-squared 0.633 0.634 0.621 0.622 0.283 0.283
Observations 88,584 88,584 88,584 88,584 88,584 88,584
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Table 13
Stock Characteristics Around Splits

This table shows mean institutional ownership and sales volatility before and after stock splits, as well as the
di�erence. Institutional ownership is as de�ned in Table 6. Sales volatility is as de�ned in Table 4. Before
(after) split institutional ownership refers to institutional ownership based on the last (�rst) observed 13f
�ling for each stock prior to (following) the split. Before (after) split sales volatility refers to sales volatility
based on the most last (�rst) four completed quarters prior to (following) the split.

Before Split After Split Di�erence

Obs Mean Std Dev Obs Mean Std Dev Obs Mean Std Dev

Inst. Ownership 4,531 0.473 0.290 4,610 0.463 0.279 9,141 0.009 0.006
Sales Volatility 4,484 0.201 1.566 4,691 0.209 1.939 9,175 -0.008 0.037
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APPENDIX

Figure A1
Splits: Large Cap Subsample

This �gure shows that the patterns relating to splits discussed in Section 4.2 are not only driven by small-cap
stocks. The data used to generate these �gures is restricted to �rms in Fama French size categories 11 to
20 as of the month prior to the split. We examine positive stock splits only (reverse stock splits are rare for
the sample of large cap stocks).
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Figure A2
Splits: Large Cap Subsample (Continued)

This �gure shows that the patterns relating to splits discussed in Section 4.2 are not only driven by small-cap
stocks. The data used to generate these �gures is restricted to �rms in Fama French size categories 11 to
20 as of the month prior to the split. We examine positive stock splits only (reverse stock splits are rare for
the sample of large cap stocks).
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Table A1
Baseline Results: Market Beta - Positive Only

This table repeats the analysis of Table 3 Panel B, limiting the sample to observations with positive estimated
market betas.

Log(Beta)

(1) (2) (3) (4)

Log(Lagged Price) -0.0907∗∗∗ -0.292∗∗∗ -0.277∗∗∗

(0.00475) (0.00660) (0.00545)

Log(Lagged Size) 0.0238∗∗∗ 0.151∗∗∗

(0.00312) (0.00452)

Month FE Yes Yes Yes Yes

Size Category FE No No No Yes

R-squared 0.054 0.048 0.081 0.082
Observations 2,541,752 2,541,752 2,541,752 2,541,752
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