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Abstract. Motivated by bidders’ interests in concealing their private information in auc-
tions, we propose an ascending clock auction for unit-demand assignment problems that
economizes on bidder information revelation, together with a new general-purpose
measure of information revelation. Our auction uses an iterative partial reporting de-
sign such that for a given set of prices, not all bidders are required to report their demands,
and when they are, they reveal a single preferred item at a time instead of all. Our design
can better preserve bidder privacy while maintaining several good properties: sincere
bidding is an ex post Nash equilibrium, ending prices are path independent, and efficiency
is achieved if the auction starts with the auctioneer’s reservation values. Our measurement
of information revelation is based on Shannon’s entropy and can be used to compare a
wide variety of auction and nonauction mechanisms. We propose a hybrid quasi-Monte
Carlo procedure for computing this measure. Our numerical simulations show that our
auction consistently outperforms a full-reporting benchmark with up to 18% less entropy
reduction and scales to problems of over 100,000 variables.
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1. Introduction

Auctions inevitably require bidders to reveal their pri-
vate demand information. As many have noted, bid-
ders are reluctant to reveal their private valuation (e.g.,
Ausubel and Milgrom 2002, Sunderam and Parkes
2003) or have “privacy concerns.” One reason is that
bidders expect to participate in subsequent activi-
ties and negotiations where information contained
in their bids can be used against them by competitors
and third parties (Ausubel 2004, Rothkopf et al. 1990,
Rhodes-Kropf and Katzman 2008, Moldovanu 2012).
Also, bidders may not want the public to know their
bids—whether they won or lost—for fear of undesir-
able publicity (Klemperer 2002). Bidders’ privacy con-
cerns, if unabated, can have several negative con-
sequences. Bidders may be reluctant to participate inan
auction (Sunderam and Parkes 2003) or may hide their
true valuations, leading to allocative inefficiency and
revenue loss (Ausubel and Milgrom 2002). Therefore,
it is important to design auctions in a way that mit-
igates bidder privacy concerns.

Researchers often argue that dynamic auctions, in
which bidders gradually reveal their preferences in
multiple iterations, can better preserve bidder privacy
(Ausubel 2006, Cramton 2006, Lucking-Reiley 2000,

Bichler et al. 2009). But there has not been much effort
to formalize the notion of bidder privacy preserva-
tion or to optimize a dynamic auction for preserving
bidder privacy. Noting these gaps, we ask the follow-
ing research questions: (1) Can we design a dynamic
auction that better preserves bidder privacy while
maintaining desirable economic properties such as
efficiency and sincere bidding? (2) Can we formalize
bidder privacy preservation so that different auction
and nonauction mechanisms can be compared on
this dimension? By bidder privacy preservation, we
are specifically concerned with economizing on the
information revelation requirement of an auction
design.

Our approach of preserving bidder privacy is com-
plementary to measures aimed to protect “already
revealed” bidder private information using encryp-
tion and other data security methods. Information
protection measures offered by auctioneers (or third-
party platforms) are often imperfect. Bidders may
not trust the auctioneer’s intention or ability to keep
their bids secret and not use them against the bid-
ders.' Recent data breach incidents from large plat-
forms, including the Internal Revenue Service and
certain credit agencies, suggest that the risk of a data
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Our third contribution is a practical approach for
computing the information-revelation measure for
ascending auctions. In an ascending auction with
many bidders and items, calculating the posterior
entropy amounts to a high-dimensional integration
problem. To solve this problem, we first identify and
record informative events in an ascending auction as
a set of constraints on bidder valuations and then
propose an algorithm for computing high-dimensional
entropy reduction using a hybrid quasi-MC approach.
Our numerical experiments demonstrate the viability
of our computational approach.

2. Related Literature

Our research is related to two literature streams: the dy-
namic auction literature and the literature on informa-
tion revelation and entropy measure of information.

2.1. Dynamic Auctions

The literature of dynamic auctions for the assignment
problem and its generalization starts with the semi-
nal work of Demange et al. (1986) (henceforth DGS).
DGS propose a dynamic auction that requires full
reporting—that is, each bidder reports his or her en-
tire demand set in each iteration. The auctioneer
computes a minimal overdemanded set, which is an
overdemanded set with the property that none of its
proper subsets is an overdemanded set. The auc-
tioneer raises the price of the minimal overdemanded
set by one unit and then asks all bidders for their de-
mand sets again. This process continues until there is
no overdemanded set, which terminates the auction.
DGS show that in their auction, which always starts
with sellers’ reservation values, sincere bidding is an
equilibrium, the auction ends with a unique mini-
mum equilibrium price vector, and the auction is
efficient.

The same full-reporting requirement, together with
the computation of minimal overdemanded sets, is
used in the auctions of Gul and Stacchetti (2000),
Ausubel (2006), and de Vries et al. (2007), which
extend beyond unit demands. Sankaran (1994) points
out that the computation of minimal overdemanded
sets is expensive and shows that the auction ends with
the same price vector if minimal overdemanded sets
are replaced by sets produced by the Ford-Fulkerson
algorithm (Ford and Fulkerson 1962). This idea is
further generalized by Andersson et al. (2013), who
find special sets in excess demand, which require each
subset T of a set S in excess demand to have more
bidders than items, and these bidders only prefer
items in S. In the implementations of the DGS auc-
tion by Sankaran (1994) and Andersson et al. (2013),
however, the same full-reporting requirement is used.

de Vries et al. (2007) show that the DGS auction can
be interpreted as an application of the primal-dual

algorithm for the assignment problem. The primal-
dual algorithm discussed in (de Vries et al. 2007) still
requires bidders to submit their entire demand set
(i.e., it requires full reporting).’

Interestingly, DGS note that their auction is “dif-
ficult to implement in realistic situations” and pro-
pose an “approximate” auction to reduce the re-
porting requirement. In the approximate auction,
each item can accept at most one bidder, and a new
bidder displaces the incumbent bidder and increases
the price by a small increment. DGS show that, with a
small enough increment, and an assumption of sin-
cere bidding, this auction can be arbitrarily close to
the efficient DGS auction. However, the approximate
DGS auction has two drawbacks. First, it can lead to
unnecessary reassignments. Consider two bidders
who both value an item at 100. Starting from a price of
0, the two bidders must take turns to be the in-
cumbent, and it takes 100 reassignments for the
auction to end. Second, the DGS approximate auction
provides no guarantee for sincere bidding. Without
sincere bidding, it is unclear where the auction would
end or whether it would still approximate the DGS
auction. Our auction does not have the aforementioned
drawbacks: our auction replicates the economic prop-
erties of the DGS auction with a partial reporting design.

Our research, in a broad sense, is related to recent
research on multi-item dynamic auctions that con-
siders more general demand functions (Gul and
Stacchetti 2000, Bikhchandani and Ostroy 2002,
Ausubel and Milgrom 2002, Ausubel 2006, de Vries
et al. 2007, Perry and Reny 2005, Mishra and Parkes
2007, 2009), though these papers do not pay much
attention to the bidder information revelation. There
has been some work in the combinatorial auctions
literature on how to reduce bidder reporting (Parkes
2001, 2002), but this stream of research focuses more
on the winner computation and communication com-
plexities associated with reporting rather than on pre-
serving bidder privacy.

Our research is also broadly related to the literature
on practical dynamic auction designs. Information
system researchers have examined a few practical
design issues in iterative combinatorial auctions, such
as pricing rules (Bichler et al., 2013, 2009, 2017) and
bidder decision support (Adomavicius and Gupta
2005, Adomavicius et al. 2013, Petrakis et al. 2013).
There is also a stream of research on dynamic auc-
tion designs for smart markets (Bapna et al. 2008,
2011, Bichler et al. 2010). Our research adds to these
literatures with a new dimension of bidder privacy
preservation.

2.2, Bidder Information Revelation
Before the start of an auction, theauctioneerhas a prior
regarding the valuations of the bidders. After the
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auction terminates, the auctioneer can update this prior
and obtain a posterior based on the bids he or she has
observed. Our measure of information revelation is
simply a measure of entropy reduction that results from
such updating. The concept of entropy reduction is
introduced by Lindley (1956) and has since been used
widely by statisticians and information theorists.
Lindley’sidea for measuring the information revealed
by a statistical experiment (e.g., an event) is to simply
compute the difference between the uncertainty con-
tained in the posterior and the uncertainty contained in
the prior, where the uncertainty contained in a random
variable is measured using Shannon’s entropy. The
seminal work of Claude Shannon on entropy in the
late 1940s has made it clear that information is es-
sentially astatistical concept, and since then, there has
been a growing body of literature on using entropy to
quantify information gain/loss in business and eco-
nomic settings starting with the work of Marschak
(1959) and Arrow (1971) and continuing over the
years to more recent work by Marschak and Radner
(1972), Demski (1973), Sims (2003), Peng (2005), and
Cabrales et al. (2013).

Our measure of information revelation is very
different from the notion of informational surplus
(Parkes 1999), which measures the ratio between a
bidder’s final bid on items and his or her true valu-
ations. The informational surplus has more to do with
bidders’ surplus than the amount of information
revealed. An example can illustrate this point. Con-
sider an ascending auction with a buyer who has a
private valuation of v = 50. Suppose initially that the
seller believes that the valuation of the buyer is uni-
formly distributed over [50, 100]. Suppose that the last
bid of the buyer is 50. The informational surplus for
this bidder is 1, indicating that the bidder has sur-
rendered his or her entire surplus. However, the prior
and the posterior of the seller are the same, and the
information revealed is 0 by our measure. We note
also that the computation of information surplus
requires knowledge of a bidder’s private information
and thus cannot be carried out by the auctioneer.

Bidder privacy is also addressed in the literature of
secure multiparty computation (SMC), which follows
an entirely different approach. SMC, when applied to
auctions, allows several computing agents (bidders
or third parties) to jointly compute the auction out-
come over inputs while keeping those inputs private.
As reported by Brandt and Sandholm (2008), most
SMC protocols rely on at least one of the following
three conditions: (1) a certain fraction of the comput-
ing agents is trusted not to reveal any private informa-
tion, (2) malicious parties are limited to polynomially
bounded computational power, and (3) the existence
of one-way functions.* There is an increasing inter-
est in deploying SMC protocols to the real world.

However, the implementation of SMCs has been very
limited because of the challenges in finding a feasi-
ble SMC protocol, the high computational cost, and
a general lack of understanding of the technology
among the public (Bogetoft et al. 2009, Orlandi 2011).
Though some prototype SMC protocols exist for auc-
tions, they are mostly for specific types of one-shot,
sealed-bid auctions, and they tend to solve relatively
simple multiparty computation problems, often at a
high computational cost (Brandt 2006, Brandt and
Sandholm 2005, Baudron and Stern 2002, Harkavy
et al. 1998, Juels and Szydlo 2003, Montenegro and
Lopez 2014). Conceptually, our approach for bidder
privacy, which allows bidders to reveal less informa-
tion, is complementary to the SMC approach: auctions
with lower information revelation (such as ours) may
allow for computationally less complex SMC designs.
The problem of designing an auction to preserve
bidder privacy is also different from the disclosure
problems in auctions, where the main concern is
whether the auctioneer or the bidders have incentives
to disclose their private information. Examples of the
latter topic include whether the auctioneer (or seller)
should disclose his or her private information about
the item (Milgrom and Weber 1982, Lewis 2011) and
whether bidders have incentives to disclose their
valuation information (Board 2009, Tan 2016).

3. Auction Design

Consider an assignment problem with m items and n
bidders (or buyers). We focus on cases where each
bidder has a unit demand: that is, although the bidder
may have positive valuations for many items, he or
she is only interested in buying one of them.

We denote $ ={0,1,2,...,m}asaset of alternatives
that includes m items and an outside option (indexed
by 0). Fori€ {1,2,...,n} and j € §, denote v;; € [0, o)
as bidder i’s private valuation for alternative j. For
notational convenience, we use vy to denote the
auctioneer’s (indexed by 0) reservation value for al-
ternative j. We fix vgg, the auctioneer’s reservation
value for the outside option, at 0. See Table 1 for a
summary of notation.

The proposed PAC auction is a special case of as-
cending clock auctions. In a typical clock auction
(Ausubel and Cramton 2006), the auctioneer an-
nounces prices, one for each of the items being sold,
and the bidders respond with the item(s) they prefer
at the current prices—that is, their bid(s). Prices for
items with excess demand increase until bidders
submit different bids. This process is iterated until
there is no excess demand. Our auction follows the
general pattern but has special rules for bidder ac-
tivities and price adjustments.

In the PAC auction, each iteration t (except for the
last one) consists of a reassignment phase followed by






6

Liu and Bagh: Preserving Bidder Privacy in Assignment Auctions
Management Science, Articles in Advance, pp. 1-21, © 2019 INFORMS

Figure 1. Flowchart of the PAC Auction Design
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As soon as the marginal bidder appears, the price-
increase phase ends. Again, if there are multiple mar-
ginal bidders, break ties arbitrarily. Deactivate the
clocks, increase the iteration counter t « t+ 1, and
go to step 2a to reassign the marginal bidder.

For example, consider a PAC auction with five
bidders and three items with valuations given by the
payoff matrix y in the first iteration of Table 2. For the
purpose of this illustration, we assume the valuations
for the outside option and the auctioneer’s reservation
values are 0. We also assume that all bidders bid
sincerely—thatis, they bid on items that provide them
with the highest payoff at current prices.

As seen from Table 2, in iteration 1, the auctioneer
first sets the starting prices to 0 and bidders bid on
their most preferred alternatives. Item 2 has excess
demand and is chosen as the initial active set. At
currentprices, bidder 3 is marginal with a new bid on
item 3. So the auctioneer reassigns bidder 3 to item 3
and chooses a new active set to be item 2, which has
two bids. With the new active set {2}, neither active
bidder is marginal, so the auctioneer activates the
clock 2 and increases the price by 5, when a marginal
bidder 5 appears. In iteration 2, the marginal bidder 5
is reassigned to his new bid, item 3. The auctioneer
chooses item 3 to be the new active set. The marginal

Select item j with max bids. Let i| Increase prices for items in A
i [3.  until a marginal bidder

Expand A to include i's revealed
demand set & replacements

Auction ends .
Price

increase
phase

appears; t —t+1
I’

-

bidder 3’s revealed demand set is {2,3}, so the auc-
tioneer expands the active set to include item 2. With
the new active set {2,3}, there is no marginal bidder,
so the auctioneer activates clocks {2,3} and increases
the prices by 5, when a new marginal bidder 2 ap-
pears. In iteration 3, the marginal bidder 2 is reas-
signed to his or her new bid of item 1. The auctioneer
chooses item 3 to be the new active set. The marginal
bidder 5 has a revealed demand set of {2,3}, so the
auctioneer adds 2 to the active set. With the new
active set {2, 3}, the new marginal bidder is 4, and he
or she is singular. His or her replacement bidder 5 is
active and nonsingular. So the auctioneer reassigns
bidder 5 to item 2 and then assigns marginal bidder 4
to his or her new bid of item 1. The auctioneer chooses
the new active set to be item 1, and the marginal bid-
der 4 has a revealed demand of {1,2}; therefore, the
auctioneer adds 2 to the active set. With the active
set {1,2}, the marginal bidder 2 has a revealed de-
mand of {1, 3}, so the auctioneer adds 3 to the active
set. With the active set {1,2,3}, there is no marginal
bidder, so the auctioneer activates clocks {1,2,3} and
increases the prices by 19, when a new marginal bid-
der 1 appears. In iteration 4, the marginal bidder 1
drops out. The auctioneer chooses the new active set
to be item 2, the marginal bidder 2 has a revealed
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on behalf of the bidder. The privacy-preservation
benefit of our auction still applies in such “proxy”
auctions since the software agent would also reveal
less information about the bidder.

There are many directions for extending the current
work. First, it would be useful to conduct further
analysis on the complexity and scalability of the PAC
auction and pin down the sources of its informational
advantages, given our promising initial results. Sec-
ond, future research could optimize the heuristics
for choosing auction paths, which could lead to fur-
ther improvements on bidder privacy and speed.
Third, we have provided a proof-of-concept pro-
cedure for calculating the entropy-based measure of
information revelation. There is still room for opti-
mizing this procedure and adapting it for more
complex use cases. Fourth, we believe that much can
be gained by comparing other auction formats (e.g.,
first- versus second-price auctions) using our pro-
posed information-revelation measure. Fifth, we have
so far limited ourselves to the amount of informa-
tion revealed. Our reporting design undoubtedly also
impacts the amount of communication and the com-
putational complexity of the winner determination
problem, which are good candidates for a next step.
Finally, it will be interesting to see how our dynamic
auction design could be extended to more complex
assignment problems, such as multiunit and combi-
natorial assignments, and cases where bidder prefer-
ences may shift at different prices. We conjecture that
with the increasing complexity of the demand space,
as-needed partial reporting has even higher value.

Appendix. Proofs

A.1. Proof of Lemma 1

We first argue that when all bidders are sincere, then the
auction must stop in finite iterations. Suppose that it does
not. Because at any ¢ at least one price should increase, as
t — oo, there must exist one item j whose price is high
enough such that no sincere bidder would bid on this item.
But the price of an unassigned item must equal its starting
price (Observation 3), a contradiction. Now we consider
that all but one bidder bid sincerely. Again, for a large
enough ¢, at least one item has a price high enough and it
exceeds all bidders’ valuations. Because the item must be
assigned and any sincere bidder must have left the item
already, the only remaining bidder on this item must be
the insincere one. But with just one bidder on this item, the
price of this item will never rise again. So the auction of the
rest of the items, in which only the sincere bidders par-
ticipate, must end in finite iterations. O

A.2. Proof of Lemma 2

We discuss two cases: (a) 1 is assigned to the same item, say
j, in both outcomes, and (b) 1 is not. In case (a), welet I = 1.
Because 1 strictly prefers (x’,p’) to (x, p), we clearly have
p; <pj. We now consider case (b). Suppose that 1 is assigned
tojiinxandj, inx’ (j; # j2). Because bidder 1 strictly prefers

(x’,p’) to (x,p) and j; is a sincere bid at p, we have vy, —
p1j, <V1j, — p]f2 and vy}, — pj, < vy, — p1j,, which implies that

(A.1)

By Observation 3, j, must be assigned in (x,p) because
Pj, > P}, = P}, Let Cbe the winner of item j, in (x, p). Because
the price of j, is lower in (x’, p’), C must not drop out and be
a winner of some item j3 in (X, p’). The fact that C bids
sincerely at p and p’ (C is not 1) implies that vc;, —pj, 2
vcj; — Pj, and vcj; — p}J > vcj, — Pj,- So

Combining this with Equation (A.1), we have
(A.2)

Similarly, we can find another bidder who is the winner of
jain(x, p) and a winner of another item at (x’, p’). Because we
have a finite number of items, we must end up with a bidder
who is a winner of item j in (x, p)—thus, we have a per-
mutation. By construction, every item in this permutation
has a lower final price in (x/, p’) than in (x,p). O

A.3. Proof of Lemma 3

We prove Lemma 3 by contradiction. Suppose that the two
outcomes result from auctions A and B, respectively, and
bidder 1 strictly prefers (x’, p’) to (x, p). By Lemma 2, there
must be a subset of bidders I such that 1 €I, x'(I) is a
permutation of I(I), and p; <p;, Vj € x(I).

Case 1. Suppose that I includes all the assigned bidders
in x. Consider the last reassignment involving items x(I) in
auction A. There are only two possible subcases:

(a) A bidder i chooses the outside option 0 over item j €
x(I) at price p; and all other items at their respective prices.
Because bidder i bids sincerely, i is indifferent between j
and 0 at this price, which means i strictly prefers j to 0
when j’s price is pj <p;. Since i is not a winner of any item in
x’(I) in auction B and he prefers j to 0 under p’, he must be a
winner of another item, say k¢ x’(I), and strictly prefer k to 0
under p’. This contradicts the fact that i chooses 0 over k in
auction A when pi =p§ < p;.

(b) The last reassignment involves a bidder i moving into
an unassigned itemj € x(I). By Observation 3, item j must still
have a price of p; = p}, contradicting p; >p} > p}.

Case 2. Suppose that I does not include all the assigned
bidders in (x, p). Consider the last reassignment involving
items x(I) in auction A. By (b), the last reassignment cannot
be some bidder moving into an unassigned item in x(I). The
only other possibility is a bidder leaving x(I). Suppose that
bidder i is the last bidder leaving x(I). Suppose further that
he or she leavesitem j; € x(I) at time f of the auction when j's
price is pj,. Because pj, <p;,, imustbe a winner of someitem
under p’, say item j,. By sincere bidding of i (recall that
1 € x(I) and i¢ x(I)) at two auctions, we have v;j, — p]f2 Svij—
p]’-‘ and vij, —pj, 2 vij —p}z, respectively. Because p]’-‘ <pj
and p]'-2 < pj, (no price drop), we can infer

(A3)
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the same smallest price. To see that identical items have the
same ending price, we suppose two items 1 and 2 have
different final prices. Without loss of generality, we assume
that p; > p>. Because their starting prices are the same, 1
must be assigned to a bidder, say, bidder 1. By sincereness,
we have v11 — p1 > v12 — p2. But because v11 = v12 (because
they are identical), we have p; < p,, a contradiction. O

Endnotes

! The reputation of the auctioneer in the market may engender some
level of trust. However, reputation as a tool for addressing privacy
concerns of bidders has its own limitations—that is, it may give well-
established auctioneers a great advantage over newcomers, which
deters entry and negatively impacts the efficiency of the market.

%Several practical auction designs for more complex problems, such
as simultaneous multiround auctions and combinatorial clock auc-
tions, do not require full reporting (see chapters 1, 5, 7, 8, and 15 in
the Handbook of Spectrum Auction Design; Bichler and Goeree 2017).
These auctions use activity rules to mitigate insincere bidding. More
specifically, the activity rules counter—but may fail to completely
overcome—the incentive for a strategic wait-and-see behavior by
the bidders. These auction designs are not directly comparable to
ours because they are designed for more general demand structures
and have quite different designs. Some practical dynamic auction
designs for unit-demand assignment problems do not require full
reporting, but they do not have the same economic properties as
ours (see our literature review).

3de Vries et al. (2007) briefly discuss how some ascending auctions,
such as the auctionin (Ausubel and Milgrom 2002), can be interpreted
as a result of replacing the primal-dual algorithm—when solving the
efficient allocation problem—with a subgradient algorithm. The
subgradient algorithm does not require full reporting. However, as
noted by de Vries et al. (2007), it needs not converge in finite iter-
ations, and the prices in such auctions can actually decrease.

* A one-way function is a function whose value is “easy” to compute for
every input but is “hard” to invert, where easy and hard are in the
sense of the computational complexity theory. The existence of such
functions is an open conjecture.

*If i is also singularly assigned, find a replacement bidder for /, and
so on, until we have a chain of replacement that ends with a non-
singular bidder. We can always find a replacement bidder i’ whose
revealed demand includes item 1. This is because, by our way of
constructing the active set (see step 2e for details), the only way a
singular item 1 can enter the active set is through active set expansion,
where a marginal bidder j at item 2 is indifferent between item 2 and
item 1, and item 1 is added to the active set as a result. The chain of
replacement always ends in finite steps because there must be at
least one active bidder who is not singular.

®Our results still hold as long as an item with more than one bidder
is chosen as an initial active set.

7 Again, if a chain of replacement is required, expand the active set to
include all items on the chain.

8 The auction prices can increase discretely or continuously since our
auction design works for both discrete and continuous values.

*We note that the outside option cannot enter the active set via
expansion. The argument is as follows. We suppose that it has not
entered the active set so far. The only way for it to enter the active set
is via active set expansion, which would require that the current
marginal bidder has previously been assigned to the outside option
and left it—a contradiction.

" The DGS auction closely resembles the Hungarian method (Demange
et al. 1986). While the Hungarian method finds augmenting paths by
computing full demand sets from known valuations, DGS does so by
asking bidders to report them.

1 Our proof strategy contrasts with those used in the literature. The
literature typically assumes the auctioneer has 0 reservation values
and the auction starts with a 0 price vector, then shows that the
auction terminates with a price vector that is minimal within a lattice
of Walrasian equilibria (Demange et al. 1986, Mishra and Talman
2010, Andersson et al. 2013, Ausubel 2006, de Vries et al. 2007).
Showing efficiency and “strategy proofness” (a concept related to
sincereness) follow almost immediately. Our auction allows for non-
trivial reservation values and arbitrary starting prices, and therefore
needs not be efficient. Thus, we have followed a different approach that
first establishes sincereness without requiring efficiency then uses
sincereness to study auction’s terminal state.

"2 When starting prices are equal to the seller’s reservation values, our
definition of Q reduces to the definition of competitive prices in DGS
(1986). When starting prices and reservation values are 0, the ele-
ments of Q are simply the Walrasian equilibria as defined in Gul
and Stacchetti (2000).

¥We note that in an assignment with more general preferences
(i.e.,, complementary demands), a Walrasian equilibrium may not
exist, and even if it exists, the minimum Walrasian price need not
coincide with the VCG payments (Gul and Stacchetti 1999, 2000).

"For an excellent reference on entropy as well as for an intuitive
explanation of why it is an appropriate tool for quantifying in-
formation, see chapter 2 of Cover and Thomas 1991.

" We are measuring the information revealed by an event ex post.
This can be viewed as a special case of the extensive literature on
measuring, ex ante, the expected information revealed by a random
variable Y. In this case, the information Y reveals (ex ante) about X,
denoted by R(X;Y), is the average information revealed by each
possible outcome of Y. In other words, it is the sum of Pr(Y = y)R(X, y)
over all possible outcomes of Y. The expression R(X,Y) is often re-
ferred to in the literature as the mutual information between X and Y.

"5 Because the goal here is scalability, and it is time-consuming to
compute the entropy reduction for extremely large problems, we do
not compute entropy reduction in this experiment. Also, we keep the
number of scenarios to 10 to limit the total running time for large
problems.
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