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Abstract. Motivated by bidders' interests in concealing their private information in auc­
tions, we propose an ascending clock auction for unit-demand assignment problems that 
economizes on bidder information revelation, together with a new general-purpose 
measure of information revelation. Our auction uses an iterative partial reporting de­
sign such that for a given set of prices, not all bidders are required to report their demands, 
and when they are, they reveal a single preferred item at a time instead of all. Our design 
can better preserve bidder privacy while maintaining several good properties: sincere 
bidding is an ex post Nash equilibrium, ending prices are path independent, and efficiency 
is achieved if the auction starts with the auctioneer's reservation values. Our measurement 
of information revelation is based on Shannon's entropy and can be used to compare a 
wide variety of auction and nonauction mechanisms. We propose a hybrid quasi-Monte 
Carlo procedure for computing this measure. Our numerical simulations show that our 
auction consistently outperforms a full-reporting benchmark with up to 18% less entropy 
reduction and scales to problems of over 100,000 variables. 
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1. Introduction

Auctions inevitably require bidders to reveal their pri­
vate demand information. As many have noted, bid­
ders are reluctant to reveal their private valuation (e.g., 
Ausubel and Milgrom 2002, Sunderam and Parkes 
2003) or have "privacy concerns." One reason is that 
bidders expect to participate in subsequent activi­
ties and negotiations where information contained 
in their bids can be used against them by competitors 
and third parties (Ausubel 2004, Rothkopf et al. 1990, 
Rhodes-Kropf and Katzman 2008, Moldovanu 2012). 
Also, bidders may not want the public to know their 
bids-whether they won or lost-for fear of undesir­
able publicity (Klemperer 2002). Bidders' privacy con­
cerns, if unabated, can have several negative con­
sequences. Bidders may be reluctant to participate in an 
auction (Sunderam and Parkes 2003) or may hide their 
true valuations, leading to allocative inefficiency and 
revenue loss (Ausubel and Milgrom 2002). Therefore, 
it is important to design auctions in a way that mit­
igates bidder privacy concerns. 

Researchers often argue that dynamic auctions, in 
which bidders gradually reveal their preferences in 
multiple iterations, can better preserve bidder privacy 
(Ausubel 2006, Cramton 2006, Lucking-Reiley 2000, 

Bichler et al. 2009). But there has not been much effort 
to formalize the notion of bidder privacy preserva­
tion or to optimize a dynamic auction for preserving 
bidder privacy. Noting these gaps, we ask the follow­
ing research questions: (1) Can we design a dynamic 
auction that better preserves bidder privacy while 
maintaining desirable economic properties such as 
efficiency and sincere bidding? (2) Can we formalize 
bidder privacy preservation so that different auction 
and nonauction mechanisms can be compared on 
this dimension? By bidder privacy preservation, we 
are specifically concerned with economizing on the 
information revelation requirement of an auction 
design. 

Our approach of preserving bidder privacy is com­
plementary to measures aimed to protect "already 
revealed" bidder private information using encryp­
tion and other data security methods. Information 
protection measures offered by auctioneers (or third­
party platforms) are often imperfect. Bidders may 
not trust the auctioneer's intention or ability to keep 
their bids secret and not use them against the bid­
ders. t Recent data breach incidents from large plat­
forms, including the Internal Revenue Service and 
certain credit agencies, suggest that the risk of a data 
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breach is significant and the eradication of such risks 
far from trivial. In light of this, our approach of 
economizing on bidder information revelation offers 
distinct privacy-preservation benefits. Furthermore, 
our approach can be used jointly with information­
protection measures. Auctions that economize on 
information revelation also make information pro­
tection easier. 

We explore the privacy-preserving auction design 
for a class of unit-demand assignment problems, which 
are concerned with assigning m heterogeneous items 
to n agents, where each agent has a unit demand and 
private valuations. We choose unit-demand assignment 
problems as a starting point for privacy-preserving 
auction designs for a few reasons. Assignment prob­
lems with unit demand have well-known applications 
in matching markets, job assignments, and crew 
scheduling (Gale and Shapley 1962, Leonard 1983, 
Crawford and Knoer 1981) and are subproblems in 
more complex problems such as traveling salesman 
and vehicle routing (Burkard and C::ela 1999). Its re­
cent applications include online display advertising 
(Feldman et al. 2010), online crowdsourcing market­
places (Ho and Vaughan 2012), and electric vehicle 
networks (Clemente et al. 2014 ). Ideas for solving unit­
demand assignment problems have been instrumental 
for developing solutions for more general network 
flow and assignment problems (Akgiil ] 992). 

Our research makes the following three main 
contributions: 

• First, we propose an ascending clock auction 
design for unit-demand assignment problems that 
offers better protection for bidder privacy than 
existing benchmarks while maintaining several de­
sirable economic properties (e.g., efficiency and sin­
cereness) and scaling to problems of over 100,000 
variables. 

• Second, we propose a novel, general-purpose 
measure of information revelation based on en­
tropy that can be used to compare a wide variety of 
different auction and nonauction mechanisms. 

• Third, we propose a hybrid quasi-Monte Carlo 
( quasi-MC) method for computing the entropy-based 
measure of information revelation for ascending 
clock auctions. 

We next discuss the aforementioned contributions 
in further detail. Our first contribution is an ascending 
clock auction, which we call a privacy-preserving as­
cending clock (PAC) auction, that economizes on bidder 
information revelation. In our auction, item prices are 
posted and may increase when there is excess de­
mand. We iteratively choose subsets of items with 
excess demands (called active items) and ask bidders 
assigned to these items (or active bidders) whether they 
want to submit a new bid. Based on the new bid, or 
lack thereof, we determine whether to (1) increase the 
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prices of the active items simultaneously, (2) reassign 
the bidder with a new bid, or (3) expand the set of ac­
tive items. This process continues until no item has 
excess demand. 

Notably, the PAC auction uses an iterative partial 
reporting design in the sense that in each iteration, not 
all bidders are required to report their demands, and 
when they are, they only need to reveal a single 
preferred alternative instead of all. Because of the 
partial reporting design, we can economize on bidder 
information revelation. Remarkably, despite partial 
reporting, the PAC auction maintains several good 
economic properties, including (1) it stops in a finite 
number of iterations, (2) sincere bidding at every 
stage of the auction is an ex post Nash equilibrium, 
and (3) for a given set of valuations, the auction 
revenue and ending prices depend only on starting 
prices (i.e., path independence). Moreover, if a PAC 
auction starts with the auctioneer's reservation values, 
then (4) it ends with an efficient allocation and (5) 
Vickery-Clarke-Groves (VCG) payments for win­
ning bidders. 

In contrast, most existing ascending auctions for 
unit-demand assignment problems that demonstrate 
similar economic properties assume full reporting, in 
the sense that all bidders must report, at any iteration, 
their entire demand set-that is, all preferred items at 
the current prices.2 These auctions use fully reported 
demand sets to find an overdemanded set-a set of 
items with the property that the number of bidders 
who only prefer items in the set exceeds the number of 
items in the set. Full reporting allows the auctioneer to 
immediately determine an appropriate set of items for 
price increase but has two main drawbacks. First, as 
noted by Demange et al. (1986), Gul and Stacchetti 
(2000), and Perry and Reny (2005), it is "excessive" in 
the sense that bidders must report, at every price, 
their entire demand sets. An accidental omission of 
one item from reported demand sets can cause an 
inconsistency with later reports. Second, as we will 
show, full reporting is unnecessary for achieving the 
above-mentioned economic properties. Requiring full 
reporting can exacerbate bidder privacy concerns. 

Our second contribution is a novel, general-purpose 
measure of information revelation. This measure cap­
tures the amount of information gained about a bidder 
by calculating the difference between the entropies of 
the posterior and the prior distributions of the bidder's 
valuation. We use an entropy-based measure be­
cause it satisfies a long list of desirable properties (see 
Section 5.1 for details). Moreover, the measure is 
general enough to be used by any number of auction 
and nonauction mechanisms. To our knowledge, this 
is the first time entropy reduction is used for measuring 
bidder privacy preservation in an auction or a mecha­
nism design setting. 
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Our third contribution is a practical approach for 
computing the information-revelation measure for 
ascending auctions. In an ascending auction with 
many bidders and items, calculating the posterior 
entropy amounts to a high-dimensional integration 
problem. To solve this problem, we first identify and 
record informative events in an ascending auction as 
a set of constraints on bidder valuations and then 
propose an algorithm for computing high-dimensional 
entropy reduction using a hybrid quasi-MC approach. 
Our numerical experiments demonstrate the viability 
of our computational approach. 

2. Related Literature

Our research is related to two literature streams: the dy­
namic auction literature and the literature on informa­
tion revelation and entropy measure of information. 

2.1. Dynamic Auctions 
The literature of dynamic auctions for the assignment 
problem and its generalization starts with the semi­
nal work of Demange et al. (1986) (henceforth DGS). 
DGS propose a dynamic auction that requires full 
reporting-that is, each bidder reports his or her en­
tire demand set in each iteration. The auctioneer 
computes a minimal overdemanded set, which is an 
overdemanded set with the property that none of its 
proper subsets is an overdemanded set. The auc­
tioneer raises the price of the minimal overdemanded 
set by one unit and then asks all bidders for their de­
mand sets again. This process continues until there is 
no overdemanded set, which terminates the auction. 
DGS show that in their auction, which always starts 
with sellers' reservation values, sincere bidding is an 
equilibrium, the auction ends with a unique mini­
mum equilibrium price vector, and the auction is 
efficient. 

The same full-reporting requirement, together with 
the computation of minimal overdemanded sets, is 
used in the auctions of Gul and Stacchetti (2000), 
Ausubel (2006), and de Vries et al. (2007), which 
extend beyond unit demands. Sankaran (1994) points 
out that the computation of minimal overdemanded 
sets is expensive and shows that the auction ends with 
the same price vector if minimal overdemanded sets 
are replaced by sets produced by the Ford-Fulkerson 
algorithm (Ford and Fulkerson 1962). This idea is 
further generalized by Andersson et al. (2013), who 
find special sets in excess demand, which require each 
subset T of a set S in excess demand to have more 
bidders than items, and these bidders only prefer 
items in S. In the implementations of the DGS auc­
tion by Sankaran (1994) and Andersson et al. (2013), 
however, the same full-reporting requirement is used. 

de Vries et al. (2007) show that the DGS auction can 
be interpreted as an application of the primal-dual 
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algorithm for the assignment problem. The primal­
dual algorithm discussed in (de Vries et al. 2007) still 
requires bidders to submit their entire demand set 
(i.e., it requires full reporting).3 

Interestingly, DGS note that their auction is "dif­
ficult to implement in realistic situations" and pro­
pose an "approximate" auction to reduce the re-  
porting requirement. In the approximate auction, 
each item can accept at most one bidder, and a new 
bidder displaces the incumbent bidder and increases 
the price by a small increment. DGS show that, with a 
small enough increment, and an assumption of sin­
cere bidding, this auction can be arbitrarily close to 
the efficient DGS auction. However, the approximate 
DGS auction has two drawbacks. First, it can lead to 
unnecessary reassignments. Consider two bidders 
who both value an item at 100. Starting from a price of 
0, the two bidders must take turns to be the in­
cumbent, and it takes 100 reassignments for the 
auction to end. Second, the DGS approximate auction 
provides no guarantee for sincere bidding. Without 
sincere bidding, it is unclear where the auction would 
end or whether it would still approximate the DGS 
auction. Our auction does not have the aforementioned 
drawbacks: our auction replicates the economic prop­
erties of the DGS auction with a partial reporting design. 

Our research, in a broad sense, is related to recent 
research on multi-item dynamic auctions that con­
siders more general demand functions (Gul and 
Stacchetti 2000, Bikhchandani and Ostroy 2002, 
Ausubel and Milgrom 2002, Ausubel 2006, de Vries 
et al. 2007, Perry and Reny 2005, Mishra and Parkes 
2007, 2009), though these papers do not pay much 
attention to the bidder information revelation. There 
has been some work in the combinatorial auctions 
literature on how to reduce bidder reporting (Parkes 
2001, 2002), but this stream of research focuses more 
on the winner computation and communication com­
plexities associated with reporting rather than on pre­
serving bidder privacy. 

Our research is also broadly related to the literature 
on practical dynamic auction designs. Information 
system researchers have examined a few practical 
design issues in iterative combinatorial auctions, such 
as pricing rules (Bichler et al., 2013, 2009, 2017) and 
bidder decision support (Adomavicius and Gupta 
2005, Adomavicius et al. 2013, Petrakis et al. 2013). 
There is also a stream of research on dynamic auc­
tion designs for smart markets (Bapna et al. 2008, 
201 l, Bichler et al. 2010). Our research adds to these 
literatures with a new dimension of bidder privacy 
preservation. 

2.2. Bidder Information Revelation 
Before the start of an auction, the auctioneer has a prior 
regarding the valuations of the bidders. After the 
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auction terminates, the auctioneer can update this prior 
and obtain a posterior based on the bids he or she has 
observed. Our measure of information revelation is 
simply a measure of entropy reduction that results from 
such updating. The concept of entropy reduction is 
introduced by Lindley {1956) and has since been used 
widely by statisticians and information theorists. 
Lindley's idea for measuring the information revealed 
by a statistical experiment (e.g., an event) is to simply 
compute the difference between the uncertainty con­
tained in the posterior and the uncertainty contained in 
the prior, where the uncertainty contained in a random 
variable is measured using Shannon's entropy. The 
seminal work of Claude Shannon on entropy in the 
late 1940s has made it clear that information is es­
sentially a statistical concept, and since then, there has 
been a growing body of literature on using entropy to 
quantify information gain/loss in business and eco­
nomic settings starting with the work of Marschak 
{1959) and Arrow (1971) and continuing over the 
years to more recent work by Marschak and Radner 
(1972), Demski {1973), Sims (2003), Peng {2005), and 
Cabrales et al. (2013). 

Our measure of information revelation is very 
different from the notion of informational surplus 
(Parkes 1999), which measures the ratio between a 
bidder's final bid on items and his or her true valu­
ations. The informational surplus has more to do with 
bidders' surplus than the amount of information 
revealed. An example can illustrate this point. Con­
sider an ascending auction with a buyer who has a 
private valuation of v = 50. Suppose initially that the 
seller believes that the valuation of the buyer is uni­
formly distributed over [50, 100]. Suppose that the last 
bid of the buyer is 50. The informational surplus for 
this bidder is 1, indicating that the bidder has sur­
rendered his or her entire surplus. However, the prior 
and the posterior of the seller are the same, and the 
information revealed is Oby our measure. We note 
also that the computation of information surplus 
requires knowledge of a bidder's private information 
and thus cannot be carried out by the auctioneer. 

Bidder privacy is also addressed in the literature of 
secure multiparty computation (SMC), which follows 
an entirely different approach. SMC, when applied to 
auctions, allows several computing agents (bidders 
or third parties) to jointly compute the auction out­
come over inputs while keeping those inputs private. 
As reported by Brandt and Sandholm (2008), most 
SMC protocols rely on at least one of the following 
three conditions: (1) a certain fraction of the comput­
ing agents is trusted not to reveal any private informa­
tion, (2) malicious parties are limited to polynomially 
bounded computational power, and (3) the existence 
of one-way functions.4 There is an increasing inter­
est in deploying SMC protocols to the real world. 
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However, the implementation of SMCs has been very 
limited because of the challenges in finding a feasi­
ble SMC protocol, the high computational cost, and 
a general lack of understanding of the technology 
among the public (Bogetoft et al. 2009, Orlandi 2011). 
Though some prototype SMC protocols exist for auc­
tions, they are mostly for specific types of one-shot, 
sealed-bid auctions, and they tend to solve relatively 
simple multiparty computation problems, often at a 
high computational cost (Brandt 2006, Brandt and 
Sandholm 2005, Baudron and Stern 2002, Harkavy 
et al. 1998, Juels and Szydlo 2003, Montenegro and 
Lopez 2014). Conceptually, our approach for bidder 
privacy, which allows bidders to reveal less informa­
tion, is complementary to the SMC approach: auctions 
with lower information revelation (such as ours) may 
allow for computationally less complex SMC designs. 

The problem of designing an auction to preserve 
bidder privacy is also different from the disclosure 
problems in auctions, where the main concern is 
whether the auctioneer or the bidders have incentives 
to disclose their private information. Examples of the 
latter topic include whether the auctioneer (or seller) 
should disclose his or her private information about 
the item (Milgrom and Weber 1982, Lewis 2011) and 
whether bidders have incentives to disclose their 
valuation information (Board 2009, Tan 2016). 

3. Auction Design
Consider an assignment problem with m items and n
bidders (or buyers). We focus on cases where each
bidder has a unit demand: that is, although the bidder
may have positive valuations for many items, he or
she is only interested in buying one of them.

We denote J = {0, 1,2, ... , m} as a set of alternatives 
that includes m items and an outside option (indexed 
by 0). For i E {1,2, ... ,n} andj E J, denote V;j E [0,oo) 
as bidder i's private valuation for alternative j. For 
notational convenience, we use Voj to denote the 
auctioneer's (indexed by 0) reservation value for al­
ternative j. We fix Voo, the auctioneer's reservation 
value for the outside option, at 0. See Table 1 for a 
summary of notation. 

The proposed PAC auction is a special case of as­
cending clock auctions. In a typical clock auction 
(Ausubel and Cramton 2006), the auctioneer an­
nounces prices, one for each of the items being sold, 
and the bidders respond with the item(s) they prefer 
at the current prices-that is, their bid(s). Prices for 
items with excess demand increase until bidders 
submit different bids. This process is iterated until 
there is no excess demand. Our auction follows the 
general pattern but has special rules for bidder ac­
tivities and price adjustments. 

In the PAC auction, each iteration t (except for the 
last one) consists of a reassignment phase followed by 
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Table 1. Notation 

Notation 

m 
n 

' 
V; 

pt 
't p 

x/ 
xt 
D;(p) 
RD;(p) 

n 

Number of items 
Number of bidders 

Interpretation 

A set of alternatives {0, 1, 2, ... , m} including m items 
and the outside option 0 

bidder i (or the auctioneer, if i = O)'s valuation for 
alternative j 

vi = (v;o, vil, ... , v;,,,) 
Index the iterations of an auction 
the price of item j at the beginning of iteration t 
pt = (p~, p\, ... ,pi,,) 
the item assigned to agent i at the end of iteration t 
xt = (xi, .. . , x~1) 

The demand set for a bidder i given the price vector p. 
The revealed demand set for a bidder i given the price 

vector p. 
The set of auction outcomes { (x, p)} where every bidder 

is sincere. 
The set of auction outcomes { (x, p)} where every bidder 

but i is sincere. 

a price-increase phase. In a reassignment phase, prices 
of all items remain fixed. The auctioneer chooses a 
subset of items with excess demand, called an active 
set .ii, and iteratively refines it by reassigning marginal 
bidders (i.e., an active bidder who is indifferent be­
tween his or her assigned item and an alternative 
outside the active set) or expanding the set until one 
obtains an active set that has no marginal bidder­
which indicates an overdemanded set. In the price­
increase phase, the auctioneer increases the prices of 
the active set while bidder assignments remain fixed, 
until a marginal bidder appears. 

Denote p1 = (Pb, Pi, Pt . .. , p~,) as a price vector at the 
beginning of iteration t. The price for the outside 
option Pb is fixed at Oat all times. We often omit the 
superscript t for simplicity. 

We define bidder i's demand set for a price vector p 
as the set of alternatives that maximize i's utility: 

D;(p) = argmaxjEJ(V;j -pj), Vi= 1,2, ... n. (1) 

We further define a bidder i's revealed demand for a 
given price vector p, RD;(p), as a set of preferred al­
ternatives for this price vector, as inferred from his or 
her current and past bids. For example, if a bidder's 
current bids are {l, 3} (i.e., he or she is indifferent 
between items 1 and 3), his or her revealed demand 
should include {l, 3}. If we further know that the 
bidder's bid was item 4 when p1 = 20 and p4 = 25 and 
the current prices are p1 = 21 and p4 = 26, then we 
infer that the bidder still prefers item 4. Thus, the 
bidder's revealed demand includes {l,3,4}. 

The PAC auction maintains a provisional assign­
ment, which is a mapping from bidders to items. 
We denote such an assignment as x = (xi, X2, ... , Xn), 
where x; E {0, 1, ... , m} is the alternative (an item or 
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the outside option) assigned to bidder i. For example, 
x1 = 2 represents that item 2 is assigned to bidder 1. If 
a bidder is assigned to the outside option, we say the 
bidder is unassigned. Similarly, an item is unassigned 
when no bidder is assigned to it. We say a bidder and 
an item are singular if the bidder is solely assigned to 
the item. 

We now describe the PAC auction in detail (see 
Figure 1 for a flowchart). To facilitate the description, 
we imagine that for each item, there is a clock dis­
playing the current price of the item for all bidders to 
see. We say a clock is active if the associated item is 
part of the active set. 

1. (Initialization) The iteration counter tis set to 0. 
All clocks are initially inactive, and the prices are set 
to p0 . Each bidder names a single alternative (an item 
or the outside) as his or her initial bid and is pro­
visionally assigned to it. 

2. (Reassignment) While the clocks are inactive, the 
auction proceeds as follows: 

(a) (Reassign the marginal bidder) If there is a 
marginal bidder i, and i is not singular (i.e., not solely 
assigned to an item), then reassign i to his or her new 
bid. If i is singularly assigned, say to item 1, find a 
replacement bidder i' among active bidders such that 
i''s revealed demand includes item 1. Reassign the re­
placement bidder i' to 1 before assigning i to his or her 
new bid so that item 1 maintains at least one bidder.5 

(b) (Termination) If no item has more than one 
bid, the auction ends. Each assigned bidder receives 
his or her assigned item and pays the current price of 
the item. The unassigned bidders do not pay. 

(c) (Choose an initial active set) Among items 
with more than one bid, choose the one, say j, with the 
largest number of bids as the new active set .ii= {j}.6 

Break ties arbitrarily. 
(d) (Bid inquiry) Active bidders are asked whether 

they are marginal. If there are multiple marginal bid­
ders, break ties arbitrarily. If there is none, the reas­
signment phase ends, and the auction enters a price­
increase phase (step 3). Otherwise, proceed to the next 
step. 

(e) (Active set expansion) Expand the active set .ii 
to include the marginal bidder's revealed demand 
set. This prevents the marginal bidder from switching 
back and forth between his or her reportedly indif­
ferent items and reduces unnecessary bid revisions. 
Furthermore, if the marginal bidder is singular, ex­
pand the active set to include his or her replacement. 7 If 
this step results in an expanded active set, then go to 
step 2d to query a new set of active bidders. Other­
wise, reassign the marginal bidder (step 2a). 

3. (Price increase) Activate all the clocks in the ac­
tive set. The prices of active clocks increase synchro­
nously, and the active bidders are asked for new bids 
as prices increase, until a marginal bidder appears.8 
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Figure 1. Flowchart of the PAC Auction Design 

1. 
Set initial prices p0

; t = o 
Get initial bids 
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Reassignment'-------�----_.. 
phase 

:""""\""''"""""""""""""""" "'""""""""""" 

�--.... 2a. Reassign the marginal bidder 

Yes 

Select item j with max bids. Let 
2c. active set A= {}} 

Expand A to include rs revealed 
demand set & replacements 

No 

As soon as the marginal bidder appears, the price­
increase phase ends. Again, if there are multiple mar­
ginal bidders, break ties arbitrarily. Deactivate the 
clocks, increase the iteration counter t - t + l, and 
go to step 2a to reassign the marginal bidder. 

For example, consider a PAC auction with five 
bidders and three items with valuations given by the 
payoff matrix yin the first iteration of Table 2. For the 
purpose of this illustration, we assume the valuations 
for the outside option and the auctioneer's reservation 
values are 0. We also assume that all bidders bid 
sincerely-that is, they bid on items that provide them 
with the highest payoff at current prices. 

As seen from Table 2, in iteration 1, the auctioneer 
first sets the starting prices to O and bidders bid on 
their most preferred alternatives. Item 2 has excess 
demand and is chosen as the initial active set. At 
current prices, bidder 3 is marginal with a new bid on 
item 3. So the auctioneer reassigns bidder 3 to item 3 
and chooses a new active set to be item 2, which has 
two bids. With the new active set {2}, neither active 
bidder is marginal, so the auctioneer activates the 
clock 2 and increases the price by 5, when a marginal 
bidder 5 appears. In iteration 2, the marginal bidder 5 
is reassigned to his new bid, item 3. The auctioneer 
chooses item 3 to be the new active set. The marginal 

No 

No 

Auction ends 
Price 

increase 
phase 

I 

Increase prices for items in A 
3. until a marginal bidder

appears; t +- t + 1

bidder 3's revealed demand set is {2,3}, so the auc­
tioneer expands the active set to include item 2. With 
the new active set {2,3}, there is no marginal bidder, 
so the auctioneer activates clocks {2, 3} and increases 
the prices by 5, when a new marginal bidder 2 ap­
pears. In iteration 3, the marginal bidder 2 is reas­
signed to his or her new bid of item 1. The auctioneer 
chooses item 3 to be the new active set. The marginal 
bidder 5 has a revealed demand set of {2,3}, so the 
auctioneer adds 2 to the active set. With the new 
active set {2, 3}, the new marginal bidder is 4, and he 
or she is singular. His or her replacement bidder 5 is 
active and nonsingular. So the auctioneer reassigns 
bidder 5 to item 2 and then assigns marginal bidder 4 
to his or her new bid of item 1. The auctioneer chooses 
the new active set to be item 1, and the marginal bid­
der 4 has a revealed demand of {l, 2}; therefore, the 
auctioneer adds 2 to the active set. With the active 
set {l, 2}, the marginal bidder 2 has a revealed de­
mand of {l, 3}, so the auctioneer adds 3 to the active 
set. With the active set {l, 2, 3}, there is no marginal 
bidder, so the auctioneer activates clocks {l, 2, 3} and 
increases the prices by 19, when a new marginal bid­
der 1 appears. In iteration 4, the marginal bidder 1 
drops out. The auctioneer chooses the new active set 
to be item 2, the marginal bidder 2 has a revealed 
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Table 2. An Example of the PAC Auction 

t 
Prices p & Bidders' current 
Payoffs y bid 

1 2 3 # 1 2 3 4 5 

p 0 0 0 #1 1 3 @ 2 2 
19 3 18 #2 1 3 3 2 2 

1 
21 24 26 2 inquiries and 1 bid revision 

y 0 25 25 
22 32 27 
17 30 25 

p 0 5 0 #1 1 3 3 2 @ 
19 -2 18 #2 1 3 3 ~ @ 

2 
21 19 26 #3 1 3 3 2 3 

y 0 20 25 2 inquiries and 1 bid revision 
22 27 27 
17 25 25 

p 0 10 5 #1 1 @ 3 2 3 ,__ 
19 -7 13 #2 1 1 3 2 @ 
21 14 21 #3 1 1 3 @ 3 

y 0 15 20 #4 1 1 3 2 @ 
3 22 22 22 #5 1 1 3 @ 2 

17 20 20 #6 1 1 ---r- CD 2 
#7 1 CD -r 1 2 

#8 1 1 3 1 2 
5 inquiries and 3 bid revisions 

p 19 29 24 #1 1 1 3 1 2 
~ 

0 -26 -6 #2 0 CD 3 1 2 

4 
2 -5 2 #3 0 I 3 CD 2 

y -19 -4 1 #4 0 1 3 1 2 
3 3 3 3 inquiries 1 bid revisions 
-2 1 1 

p 20 30 25 #1 0 1 3 1 @ 
-1 -27 -7 #2 0 1 3 CD 2 

5 
1 -6 1 #3 0 1 3 2 @ 

y -20 -5 0 #4 0 1 3 2 0 
2 2 2 0 inquiry and 2 bid revisions 
-3 0 0 

7 

Num of bids 
A MB to Remark 

at item 
1 2 3 

1 @ 1 2 3 3 bidder 3: 2-+3 
1 @ 2 2 - - P2+5 

1 @ 2 2 5 3 bidder 5: 2-+3 
1 1 @ 3 5 - AU{2} 
1 CD @ 3,2 - - {P2,p3}+ 5 

1 CD @ 3,2 2 1 bidder 2: 3-+ 1 
2 1 @ 3 5 - Au {2} 
2 CD @ 3,2 4 - MB 4 is singular 
2 CD @ 3,2 5 2 bidder 5: 3-+2* 
2 @ CD 3,2 4 1 bidder 4: 2-+ 1 

@ 1 1 1 4 - AU{2} 
@ CD 1 1,2 2 - AU{3} 
@ CD CD 1,2,3 - - {p1,P2,p3}+ 19 

@ CD CD 1,2,3 1 0 bidder 1: 1-+0 
@ 1 1 1 2 - Au {3} 
@ 1 CD 1,3 4 - Au {2} 
@ CD CD 1,3,2 - - {P1, P2,p3}+ 1 

@ CD CD 1,3,2 5 - MB 5 is singular 

CD @ CD 1,3,2 4 2 bidder 4: 1-+2* 

CD CD CD 1,3,2 5 0 bidder 5: 2-+0 
1 1 1 - - - the end 

9 : Active bidder 
A : Active set 

® : Marginal bidder ® 
MB : Marginal bidder to 

: Active item 
: Marginal bidder's new bid 

* : a replacement step 

demand set of {1,3}, so the auctioneer adds 3 to the 
active set. With the active set {1, 3}, an active bidder 4 
has a revealed demand of {l, 2}, so the auctioneer 
adds 2 to the active set. With the active set {1, 2, 3}, 
there is no marginal bidder, so the auctioneer acti­
vates clocks {l, 2, 3} and increases the prices by 1, when 
a new marginal bidder 1 appears. In iteration 5, the 
marginal bidder 5 is singular at item 2. His or her re­
placement bidder 4 is active and nonsingular, so the 
auctioneer reassigns bidder 4 from item 1 to item 2. 
The auctioneer then lets the marginal bidder 5 drop 

out. At this point, neither item has excess demand, 
so the auction ends. 

From the description of the auction procedure and 
the preceding example, we make the following ob­
servations about the PAC auction: 

Observation 1. An active bidder cannot bid on the 
same item twice during a reassignment phase. 

Observation 2. Bidders who drop out can never reenter. 

Observation 3. Unassigned items must be at their 
starting prices. 
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Observation 1 states that an active bidder cannot 
make a round trip within a single reassignment phase. 
This is because once the bidder becomes marginal, 
we expand the active set to include all items in his or 
her revealed demand set, so he or she can no longer bid 
on them (refer to step 2e). There is no reentry into the 
auction (Observation 2) because to leave the outside 
option, the outside option needs to be active. How­
ever, the outside option, by design, can never be part 
of the active set.9 

To see Observation 3, we first argue that once an 
item gets its first bidder, it will maintain at least one 
bidder in subsequent bidding. By our auction rule, 
only an active item may lose a bidder. If an active item 
has two or more bidders, the argument holds trivially. 
If an active item has only one bidder, which can 
happen only when it becomes active via active set 
expansion, our auction procedure as described in step 
2a ensures that it maintains at least one bidder. Thus, 
an unassigned item must have no prior bids. Because 
an item with no prior bids has never been active and 
the auctioneer only increases prices of active items, an 
unassigned item must be at its starting price. 

Importantly, the PAC auction implements a partial 
reporting design that can reduce information reve­
lation. The auctioneer only needs to know the new bid 
of one marginal bidder if there are multiple bidders. 
For example, in step 3 of iteration 5, both bidders 3 
and 5 are marginal, but because 5 drops out, 3 never 
needs to reveal that he or she is indifferent between 
staying and dropping out. Moreover, the marginal 
bidder only needs to name a single alternative from 
his or her demand set, even though his or her demand 
set may be larger. For example, in step 5 of iteration 3, 
marginal bidder 4 is indifferent between three items, 
but he or she does not reveal that he or she is indif­
ferent between items 2 and 3 (he or she never will). As 
can be seen from these examples, partial reporting 
can lead to less information revelation. This is espe­
cially true when there are ties in the auction process, 
whether between competing marginal bidders or 
between several preferred alternatives of the same 
marginal bidder. 

It is interesting to compare the PAC auction with 
the Hungarian method for assignment problems 
(Kuhn 1955). As the first primal-dual approach, the 
Hungarian method alternates between improving 
the dual variables (u, v), which may be interpreted as 
surplus for bidders and prices for items, respectively, 
and primal variables x, which is a feasible solution for 
a restricted primal problem. The Hungarian method 
starts from an empty assignment and augments it 
by assigning additional bidder-item pairs until it as­
signs all bidders/items. Our PAC auction alternates 
between adjusting the assignment (primal) and item 
prices (dual), but it is a dual algorithm rather than a 
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primal-dual one. In particular, our auction maintains 
a provisional assignment for all agents, which is an 
infeasible primal vector, and pivots it until it becomes 
feasible. Furthermore, the Hungarian method and al­
gorithms inspired by it typically assume complete in­
formation or full reporting of demands,1° whereas the 
PAC auction operates on partial information about 
demand sets. 

4. Auction Properties 
In this section, we analyze our auction's equilibrium 
bidding behaviors, efficiency, revenue, and ending 
prices. We also study the relationship between our 
auction and the VCG mechanism. 

In dynamic auctions, the final outcomes depend on 
the auction process, which may not be unique because 
of tie breaking by the auctioneer or bidders. Fur­
thermore, when bidders are not sincere, we do not 
know what the end prices or assignments will be; in 
fact, we do not know if the auction will end. Hence, to 
limit the number of possible outcomes, we start by 
establishing that sincere bidding is an ex post Nash 
equilibrium. ·11 

4.1. Sincere Bidding 
Sincere bidding in our auction context is defined as 
follows. 

Definition 1 (Sincere Bidding). An active bidder bids 
sincerely if his or her actions are consistent with his or 
her demand set; that is, the bidder submits a new bid if 
and only if his or her demand set includes an alter­
native that is inactive, and the new bid is indeed from 
the bidder's demand set. A bidder is sincere if he or she 
always bids sincerely. 

The definition implies that in the initial and sub­
sequent bids, a sincere bidder can only bid on items in 
his or her demand set, and he or she must submit a 
new bid if his or her demand set includes an alter­
native that is inactive. 

To study whether a bidder has incentive to deviate 
from sincere bidding, we compare the auction out­
comes when bidders are sincere and when all but one 
bidder is sincere. But first, we need to know whether 
the auction actually ends. Clearly, if there are two or 
more insincere bidders, the auction can continue in­
definitely (though this may not be in their best in­
terests). Fortunately, when there is at most one 
insincere bidder, we have the following. 

Lemma 1. If there is at most one insincere bidder, the 
auction must end in finite iterations. 

Proof. All proofs are in the appendix. □ 

We additionally note there can be only a finite 
number of bid revisions within an iteration. This is 
because our active set expansion mechanism prevents 
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the marginal bidder from bidding on items toward 
which he or she has already been revealed to be in­
different. The actual bid revisions per iteration are 
much fewer than what is theoretically possible, which 
we later show through our numerical experiments. 

We now consider auction outcomes with and with­
out an insincere bidder. For a given set of valuations 
and starting prices, let O denote the set of all possible 
outcomes when all bidders are sincere, and let 0_1 

denote those when all but bidder 1 are sincere. 12 We 
call outcomes in O sincere outcomes and outcomes in 
0_1 bidder 1 insincere outcomes. Because the insincere 
bidder can also bid sincerely, 0 ~ 0-1, 

For a given assignment x, we further denote x(I) as 
the assignment for a subset of bidders I. For example, 
x(l, 2, 3) = (3, 2, 5) means that bidders 1, 2, and 3 are 
assigned to items 3, 2, and 5, respectively. 

Lemma 2. Consider a sincere outcome (x, p) E O and a 
bidder 1 insincere outcome (x', p') E 0_1, If bidder 1 strictly 
prefers ( x', p') to ( x, p), there must be a set of bidders I such 
that l EI, x(I) is a permutation of x'(I), and 

p1 < pj, Vj E x(I). (2) 

Lemma 2 says that for an insincere bidder to profit 
from manipulating the auction's outcome, he or she 
must be part of a group that collectively obtains the 
same items (possibly with permutation) at strictly 
lower prices than the sincere auction outcome. Such a 
group of bidders cannot exist, as per the next lemma. 

Lemma 3. Consider a sincere auction outcome (x, p) E 0 
and a bidder 1 insincere outcome (x',p') E 0_1, where 
bidder 1 weakly prefers (x, p) to (x', p'). 

The group described in the Lemma 2 cannot exist 
because there is a last bidder problem: to depress prices 
for the items assigned to the group, there must be an 
out-group bidder who prematurely exits the com­
petition for these items, which could not happen 
because all out-group bidders are sincere. 

With Lemma 3, we immediately have the following 
proposition. 

Proposition 1. Bidding sincerely is an ex post Nash 
equilibrium. 

We note that our proof of sincere bidding does not 
depend on the actual auction path. This implies that 
the auction's sincereness is robust with respect to 
tie-breaking rules. More important, we establish Prop­
osition 1 without reference to the efficiency of auction 
outcomes. Our proof of Proposition 1 (including the 
lemmas leading to it) is based on simple combina­
torial arguments that do not require establishing the 
existence of minimum W alrasian prices or the equiva­
lence between minimum W alrasian prices and VCG 
payments. 

9 

4.2. Efficiency and Connection to VCG 
Starting the auction with arbitrary prices might lead 
to an inefficient outcome. However, our auction can 
achieve efficient outcomes for a specific set of starting 
prices. 

Proposition 2. When the starting prices are the auction­
eer's reservation valuations, the auction outcome is efficient. 

Intuitively, our auction achieves efficiency if both the 
auctioneer and the bidders are sincere. Proposition l 
guaranties that bidders are sincere. When the starting 
prices are equal to the auctioneer's reservation values, 
the auctioneer is also sincere, and the auction is efficient. 

The next proposition shows that when starting prices 
are equal to the auctioneer's reservation valuations, 
the auction implements the VCG mechanism. Therefore, 
a special case of our auction can be viewed as a decen­
tralized implementation of the VCG mechanism. 

Proposition 3. If an auction starts with the auctioneer's 
reservation values, the bidders' final payments coincide with 
their VCG payments for the same final assignment. 

We note that the VCG assignment may not be 
unique. In our auction, because of tie breaking by 
bidders and the auctioneer, the auction may end with 
different sets of winners and/ or the same bidder 
winning different items. Proposition 3 only ensures 
that the payments will be the same if our auction and the 
VCG mechanism result in the same assignment. 

4.3. Revenue and Ending Prices 
Auction revenue and ending prices are also important 
considerations in auction design. An important de­
cision for the auctioneer is to set the starting prices, 
which is analogous to setting reserve prices in one­
shot auctions. Given the importance of choosing re­
serve prices in the optimal auction design literature 
(Myerson 1981), a revenue-maximizing auctioneer 
may want to set starting prices above his or her true 
reservation values, especially if he or she has some 
knowledge of the distribution of bidders' valuations. 

From the revenue perspective, an important ques­
tion is whether our auction can end with different 
ending prices for a given starting price vector, know­
ing that our auction can end with different final as­
signments. The following result establishes that the 
final prices are the same. 

Lemma 4. If (x, p) E O is an auction outcome, then pis the 
smallest price vector among all possible auction outcomes 0. 

Lemma 4 implies that our auction must end with a 
unique set of prices (because there can only be one 
smallest price vector for 0). When the starting prices 
are 0, the auction terminates at a price vector that is 
minimal in the lattice of equilibrium prices, which 
is consistent with the ascending auction literature 
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(Demange et al. 1986, Ausubel 2006, de Vries et al. 
2007, Mishra and Talman 2010, Andersson et al. 
2013). 13 Even though the auction may end with dif­
ferent assignments, the final price vector is always the 
same (path independence). Therefore, the auction rev­
enue is also unique and path independent. The next 
result follows immediately from Lemma 4. 

Proposition 4. Auction revenue and ending prices are 
path independent. Moreover, identical items with the same 
starting price must have the same ending price. 

5. Bidder Information Revelation 
Our first step toward studying the bidder privacy 
preservation is to formalize the notion of bidder in­
formation revelation. We start with a general dis­
cussion of how to measure the reduction in the un­
certainty surrounding some random variable (i.e., 
the state of the world) as a result of observing some 
event. We then specialize this discussion to the con­
texts of auctions. 

5.1. Measuring Information Revealed by an Event 
One intuitive way of measuring the information 
revealed by a particular event is to compare our prior 
distribution regarding the random state of the world 
to the posterior conditional on the occurrence of this 
event. It is natural to require the measure of in­
formation revelation to satisfy the following list of 
desirable properties: 

• If the posterior is identical to the prior, then the 
event has not revealed anything, and the measure 
should be 0. 

• If the posterior has smaller support than the prior, 
the event is informative, and the measure should be 
positive. The most informative event will yield a 
posterior that is concentrated on a single point; the 
measure of information revealed should be maximal 
in this case. 

• If the conditional probabilities of the state of the 
world given event E1 and those given event E2 are the 
same, then E1 and E2 are equally informative, so their 
measures should be the same. 

• The measure of information revealed by simul­
taneously observing two independent events is the 
sum of the information revealed by the two events 
and should be the same if we observe the two events 
sequentially. 

• If we already know the state of the world the 
measure of information revealed by any event must 
be 0. 

Among the available information revelation mea­
sures, the measure of entropy reduction, first in­
troduced by Lindley (1956), is most natural because 
it satisfies a long list of desirable properties that in­
clude all the aforementioned ones (Shannon and 
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Weaver 1964, Basu 1975) and has been widely used 
by statisticians and information theorists. 

Lindley's entropy reduction is built on Shannon's 
information entropy, which is the standard measure 
used in information theory for quantifying the av­
erage uncertainty contained in a random variable. 14 

In general, the entropy of a random variable X that 
takes the values {x1, Xz, ... , xk} and has a probability 
mass function P(x) is given by 

K 

(Entropy) H(X) = - ~ P(xk) log2 P(xk), (3) 
k=l 

with the convention that 0 · log2 0 = 0. Note that the 
entropy of X depends only on its probability mass 
function, not on the actual values that X can take. 

Intuitively, the entropy of Xis the average number 
of bits needed to describe this random variable. For 
example, if Xis the result of a coin flip, the entropy of 
X would be H(X) = -2 x 0.5 x log2(0.5) = 1 bit. Al­
ternatively, if someone else is trying to find out what 
the realized outcome of a random variable X is by 
asking yes/no questions, entropy is the expected length 
of the shortest sequence of binary questions needed 
to determine the outcome. Consider, for example, a 
random variable X with four possible outcomes a, b, c, 
and d. Suppose that P(a) = 1/2, P(b) = 1/4, and P(c) = 
P(d) = 1/8. The shortest sequence of binary questions 
that minimizes the expected number of questions 
asked should start with the question, "Is the out­
come a?." If the answer is no, then the next question 
should be, "Is the outcome b? ." If the answer is still no, 
then the final question should be, "Is the outcome c?." 
The resulting expected number of questions needed 
to determine the outcome is 7 / 4, which is equal to the 
entropy of X obtained using Shannon's equation (3). 

We measure the information revealed by an event E 
about a random variable X as the reduction in entropy 
of X resulting from observing the event E. More spe­
cifically, it is 

(Entropy Reduction) R(X; E) = H(X) - H(XIE), (4) 

where H(X) is again the entropy of X, and H(XIE) is the 
entropy of X conditional on the occurrence of E. 15 

The formulas defining H(X) and R(X; E) can be eas­
ily generalized to the case of continuous random 
variables. 

Returning to our last example, suppose that the event 
Eis "the outcome is neither a nor b." Then, conditional 
on this event, XIE is a new random variable with 
equally likely outcomes c and d. The outcome of XIE 
can be determined with a single bi-nary question, 
and hence H(XIE) = 1, and the measure of information 
revealed by the event E is H(X) - H(XIE) = 7 / 4 -
1 = 3/4. By contrast, if the event E' is "the outcome 
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is a," then the information revealed by E' is maximal, 
and the measure of information revealed is H(X) -
H(XIE') = 7/4-0 = 7/4. 

Finally, our measure of information revelation al­
lows us to treat information as a homogeneous good 
(measured in bits), which, in turn, allows us to 
compare information revelation across auction and 
nonauction mechanisms. Note that we are measuring 
the amount of the revealed information and not its 
value; the former does not depend on who receives the 
information, whereas the latter does. 

5.2. Capturing Informative Events in 
Ascending Auctions 

The amount of information revealed in an ascending 
auction is generally path dependent. For example, 
bidding on item 1 throughout the auction reveals 
different information than first bidding on item 2 and 
then item 1. In general, at any moment in an auction, 
given bidder i's revealed demand RD; and the price 
vector p, we learn that 

v;i - Pi~ v;1 - pz, Vl E :;, Vj E RD;. (5) 

Thus, events in an auction effectively impose a set of 
constraints, in the form of Equation (5), on a bidder's 
valuations. In the event that a bidder announces his 
or her marginal status but is not picked to submit a 
new bid, his or her revealed demand set is uncertain. 
For simplicity, in what follows, we ignore the in­
formation revealed through a mere announcement of 
marginal status. Alternatively, one can assume that 
the auction is designed in such a way that any an­
nouncement of marginal status would block other 
attempts to announce one's marginal status. 

Not all events are informative about a bidder. 
During a price-increase phase, a bidder would still 
prefer his or her assigned item, if the price of the 
assigned item does not increase. So we learn nothing 
new about the inactive bidders. We learn something 
new about the active bidders as prices increase, and 
we learn the most at the end of the price-increase 
phase, when the prices are the highest. During a 
reassignment phase, the prices remain constant, and 
we learn something new about a bidder only when 
his or her revealed demand set has changed, which 
occurs when an active bidder submits a new bid. 
Therefore, it is sufficient to capture the following 
events about a bidder: when the bidder submits an ini­
tial bid, submits a new bid, or is an active bidder at the 
end of a price-increase phase. 

Because information about a bidder can be repre­
sented by the bidder's revealed demands at various 
informative events, we can record a bidder i's in­
formation set C; as a set of demand-price pairs {(j, p)}, 
where each pair (j, p) represents the bidder demanding 
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alternative j at price p. For example, in the auction 
example given in Table 2, bidder 3's information set is 

C3 = { (2, (0, 0, 0)), (3, (0, 0, 0)), (3, (0, 10, 5)), 

(3, (19, 29 I 24)), (3, (20, 30, 25)}, 

where the first demand-price pair is due to the initial 
bid, the second is his or her bid revision in iteration 1, 
and the remaining records his or her demand at the 
end of price-increase phases (when he or she is active). 

We can write a collection of informative events for 
bidder i as 

E; = {v;i - Pi~ vu - p1, Vl E :;, V(j, p) EC;}. (6) 

5.3. Calculating Privacy Loss 
In dynamic auctions such as ours, because of the 
randomness in the auction path, information revealed 
could vary from one realization of the auction to 
another. Thus, the information revealed is a random 
variable. It is not practical for us to analytically derive 
the expected amount of information revealed for a 
given auction mechanism. Instead, we use a numer­
ical simulation approach to approximate bidder in­
formation revelation. 

By the Bayesian rule, the posterior probability mass 
function of a bidder's valuation vis 

P( IE) = P(Elv)P(v) 
V P(E) I 

where P(v) is given by the prior, and P(Elv) is equal 
to 1 if v satisfies all the inequalities in Equation ( 6) and 
0 otherwise. For a set of uniform and independent 
valuation distributions, the amount of information 
revealed is simply 

R(V; E) = I:[P(vlE) log2 P(vlE) - P(v) log2 P(v)] 
V 

P(v) P(v) 
= ~ P(E) log2 P(E) - ~ P(v) log2 P(v) 

P(v) 
= log2 P(E) - log2 P(v) 

= - log2 P(E). 

The challenge lies in computing P(E), which amounts 
to a high-dimension integration problem over a 
convex feasible region, as defined by constraints in 
Equation (6). This integration problem is known to 
be difficult even with numerical integration. We thus 
resort to a Monte Carlo (MC) simulation approach 
instead. 

The basic idea of the MC simulation method is as 
follows. We draw N random bidder valuations {v} 
according to the prior distribution. We test each val­
uation against the set of constraints in Equation (6). 
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If all constraints are satisfied, we record 1; other­
wise, 0. Suppose that we record N1 ones; then P(E) 
can be approximated by Ni/N. Therefore, the amount 
of information revealed is approximated by 

(7) 

Although Equation (7) provides a straightforward way 
to simulate the entropy reduction, it would, however, 
require lots of draws (say, more than 20,000) to obtain 
a reliable estimate, largely because the MC method is 
slow in convergence. To accelerate convergence, we 
adopt the following two strategies. 

First, we use a hybrid approach that combines nu­
merical simulation and analytical evaluation. We note 
that whenever there are equal constraints such as 
v;i - v,2 = 3, a degree of freedom is lost, and a lot of 
draws are required to satisfy the equality constraint, 
which results in slow convergence. To speed things 
up, we decompose the value vector into free and 
derived variables. By construction, the derived vari­
ables can be mathematically derived using a system 
of linear equations. The entropy reduction for de­
rived variables can be evaluated analytically without 
simulation, and the entropy reduction for the free var­
iables will be simulated. 

Second, we use a quasi-MC method instead of the 
regular MC method. The former is popular in com­
putational finance for calculating high-dimensional 
integration (Boyle et al. 1997). The quasi-MC method 
works the same way as regular MC simulation, but 
the points of integration are given by a deterministic 
low-discrepancy sequence rather than the usual pseu­
dorandom sequence. We use the popular Sobol se­
quence, which is known to achieve a high convergence 
rate at high dimensions compared with the pseudo­
random sequence (Morokoff and Caflisch 1995). 

Now we describe an algorithm for calculating the 
bidder information revelation for ascending clock 
auctions. 

Algorithm 1: A Hybrid Quasi-MC Algorithm for Cal­
culating Information Revelation 

1. For the given bidder, given a set of informative 
events E, extract equality constraints, and use them 
to decompose valuation variables into a set of free 
variables F and a set of derived variables D such that 
the value of any derived variable v E F can be derived 
from free variables F via a system of linear equations, 
let n' = IIFII denote the number of free variables. 

2. Randomly draw N size-n' vectors according to 
the prior distribution. 

3. N1 -o. 
4. For each set of free variables F, derive the value 

of derived variables D by solving a system of lin­
ear equations. Test whether the free variables satisfy 
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constraints in E and the lower/upper bounds and 
whether the derived variables satisfy lower /upper 
bounds. If all constraints are satisfied, N1 - N1 + 1. 

5. Analytically calculate R(D; E) as the maximal 
information revealed for the derived variables. 

6. R(V; E) - log2(N) - log2(N1) + R(D; E). 

5.4. Numerical Experiments and Results 
In this section, we describe the results of four nu­
merical experiments on the PAC auction. The first 
three experiments evaluate the privacy-preservation 
property of the PAC auction against two benchmarks 
with similar theoretical properties: the DGS auction 
(DGS for short) and the multi-item VCG mechanism 
(VCG for short). VCG provides a full revelation bench­
mark, whereas DGS is a natural benchmark among 
dynamic auctions for assignment problems. The first 
two experiments compare PAC against benchmarks 
in low- and high-competition scenarios. The third ex­
periment examines the role of valuation dispersion­
the number of distinct values {v;j} can take. The fourth 
experiment examines the scalability of the PAC 
auction. 

For the DGS auction, we adopt the implementation 
of Sankaran (1994), which modifies the original DGS 
to make it more tractable. Following Sankaran (1994), 
we use the labeling algorithm of Ford and Fulkerson 
(1962) for finding a set of overdemanded items to 
increase prices. Entropy reduction for DGS auctions 
can be calculated in a similar way as for PAC auctions, 
noting that each reported demand set can be seen 
as a set of bids. The VCG allocation and payments 
can be solved as integer programming problems. 
We use the open-source GLPK solver for large-scale 
mixed-integer programming problems to implement 
VCG. Because participants of VCG reveal all private 
information through truthful reporting, we derive 
the entropy reduction for VCG analytically without 
simulation. 

For the first three benchmarking experiments, we 
capture entropy reduction along with three other 
metrics: number of iterations, running time, and residual 
range. An iteration for DGS, similar to an iteration for 
PAC, is a single reassignment and price-increase cycle. 
The running time refers to the actual time used for 
solving the assignment problem. It does not include 
the time used for computing the entropy reduction, 
which is done after the auction/mechanism. 

Residual range is a simplified measure of infor­
mation revelation based on the intuition that in­
formation revelation can reduce the range of possible 
valuations. From the discussion in Section 5.2, the 
information revelation introduces new inequality 
constraints in the form of Equation (6). Though 
we cannot derive a precise range of item valuations 
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V;j, we can, however, calculate the range of V;j - v;k­

Specifically, denoting [a;,jk, b;,jk] and [a;,jk' b;,jd as the 
prior and posterior ranges of V;j - v;k, respectively, we 
define the residual range for bidder i, RR;, as 

1:j,ke,p ( b;,jk - a;,jk) . . . 
RR;= ( ) , where cp = {7,kl7,k E :f, J <k}. 

I:j,ke,p bi,jk - ai,jk 

(8) 

Intuitively, RR; is the sum of posterior ranges divided 
by the sum of prior ranges for all unique {j, k} pairs. 
Because the ranges do not increase, the residual range 
is always between O and 1. The higher the residual 
range, the less information gets revealed by the auc­
tion. For example, suppose that valuations can take 
integer values from O to 15, and the prior and poste­
rior ranges of vu - V12 are [-15, 15] and [O, 10], re­
spectively. The residual range for this pair of valuations 
is 11/31. 

In all four experiments, we assume that bidder 
values are independently and uniformly distributed. 
We set the value of outside options and auctioneer 
reservation values to O for simplicity. Unless other­
wise noted, we draw integer bidder values from a 
uniform distribution between O and 15 (see Experi­
ment 3 for alternative cases). We use 5,000 draws for 
all quasi-MC simulations because our experimenta­
tion shows that this is a reasonable number for 
achieving convergence. All experiments are carried 
out using R on a desktop computer with 16 GB of 
random-access memory and an Intel Core i3-4130 
central processing unit. 

5.4.1. Experiment 1: Benchmarking Tests with Low Com­
petition. In the first experiment, we benchmark PAC 
against DGS and VCG in a low-competition envi­
ronment, where we let the number of items be the 
number of bidders minus 1. We systematically vary 
the total number of items from 2 to 20 in increments 
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of 2. For each problem size, we simulate 50 scenarios, 
each corresponding to a set of bidder valuations. We 
run three mechanisms on each of the scenarios and 
report the average outcome metrics (i.e., entropy re­
duction, residual range, number of iterations, and 
running time) across 50 scenarios in Table 3. 

As we can see from Table 3, our PAC auction 
consistently outperforms DGS on privacy preserva­
tion: it results in 6.2%-18% less entropy reduction 
than DGS, with its advantage more significant at 
larger problem sizes. This increasing benefit of PAC 
makes intuitive sense: with increasing numbers of 
bidders and items, it is increasingly unnecessary for 
bidders to reveal their full demand sets to find an 
optimal allocation. The residual range for PAC is 
consistently higher than those for DGS, suggesting 
that PAC is better at preserving bidder privacy. Both 
PAC and DGS have a significant privacy-preservation 
advantage over VCG, confirming the informal argu­
ment in the auction literature that dynamic auctions 
are better for protecting bidder privacy (Ausubel 
2006, Ausubel and Milgrom 2002, de Vries et al. 
2007, Lucking-Reiley 2000). For example, PAC re­
sults in 46%-86% less entropy reduction than VCG. 

Our PAC auction uses a comparable number of it­
erations as DGS in many cases, but it seems that PAC 
uses fewer iterations for larger problems (which we 
confirm in later experiments). The running times of PAC 
are 1.7-2.3 times that of DGS. Unsurprisingly, both 
dynamic auctions are significantly slower than VCG. 

5.4.2. Experiment 2: Benchmarking Tests with High 
Competition. The second experiment is similar to 
the first, except that we now benchmark PAC against 
DGS and VCG in a high-competition environment, 
where we keep the number of items approximately at 
one-half the number of bidders. As shown in Table 4, 
the number of iterations is noticeably higher for 
both PAC and DGS, which makes sense because of 

Table 3. Experiment 1: Benchmarking Tests with Low Competition 

Entropy reduction Residual range Iterations Running time (sec) 

n m PAC DGS VCG PAC DGS PAC DGS PAC DGS VCG 

3 2 13.1 13.9 24 -3.6*** 0.43 0.38 7.7*** 3.0 3.0 NA 0.07 0.04 0.006 3.8*** 
5 4 32.2 36.2 80 -7.8*** 0.60 0.58 7.3*** 5.2 5.3 -1.5 0.19 0.11 0.004 11.4*** 
7 6 53.9 60.0 168 -7.2*** 0.69 0.66 9.9*** 6.5 6.5 -0.5 0.39 0.19 0.008 10.8*** 
9 8 76.5 85.4 288 -10.3*** 0.74 0.71 9.6*** 7.8 7.9 -0.7 0.64 0.31 0.011 13.1 ••• 

11 10 100.6 114.0 440 -11.9*** 0.79 0.76 12.1••· 8.3 8.2 0.3 0.95 0.44 0.012 13.7*** 
13 12 130.2 148.4 624 -13.6*** 0.82 0.79 14.1 ••• 9.2 8.9 1.7 1.30 0.58 0.019 15.2*** 
15 14 153.4 180.1 840 -15.6*** 0.84 0.81 16.4*** 9.2 9.1 0.5 1.64 0.73 0.028 20.9*** 
17 16 182.0 209.3 1,088 -12.9*** 0.85 0.83 18.3*** 9.5 9.3 0.7 2.08 0.92 0.035 22.4*** 
19 18 203.6 238.9 1,368 -17.4*** 0.86 0.84 18.7*** 9.3 9.3 0.1 2.50 1.10 0.050 21.5••• 
21 20 240.6 293.4 1,680 -23.5*** 0.88 0.85 21.7*** 9.6 10.2 -2.8** 3.47 1.52 0.069 18.8*** 

Notes. Paired /-tests comparing PAC and DGS auctions. 
**p < 0.01; ·••p < 0.001. 
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Table 4. Experiment 2: Benchmarking Tests with High Competition 

Entropy reduction Residual range Iterations Running time (sec) 

n m PAC DGS VCG PAC DGS 

3 2 13.3 14.2 24 -3.9*** 0.43 0.41 
5 3 31.6 34.2 60 -4_9••· 0.48 0.45 
7 4 54.4 60.9 112 -6.9*** 0.56 0.53 
9 5 77.1 86.3 180 -6.7*** 0.63 0.59 

11 6 102.4 116.2 264 -7.1*** 0.67 0.64 
13 7 124.9 149.6 364 -10.3*** 0.71 0.66 
15 8 149.2 178.0 480 -11.8·•· 0.74 0.70 
17 9 176.4 210.1 612 -10.2••· 0.77 0.72 
19 10 202.4 240.1 760 -13.8*** 0.79 0.74 
21 11 230.5 276.8 924 -13.1*** 0.80 0.76 

Notes. Paired /-tests comparing PAC and DGS auctions. 
•p < 0.05; ••p < 0.01; ·••p < 0.001. 

intensified competition. Still, PAC consistently out­
performs DGS in privacy preservation, with 6.3%-
16.7% less entropy reduction and a bigger advantage 
at larger problem sizes. The privacy-preservation 
advantage of dynamic auctions (PAC and DGS) is 
less than the first experiment-PAC results in 44%-
75% less entropy reduction than DGS, which makes 
intuitive sense because bidders are forced to reveal 
more information with intensified competition. It 
becomes more apparent that PAC uses fewer iter­
ations than DGS for larger problems. The running 
time for PAC is 1.6-1.8 times that of DGS. Again, in 
this scenario, the residual range of PAC is also con­
sistently higher than DGS, confirming the former's 
privacy-preservation advantage. 

5.4.3. Experiment 3: Benchmarking Tests with Different 
Valuation Dispersion. In the third experiment (Table 5), 
we examine the role of valuation dispersion. We fix 
the problem size to five items and nine bidders but 
vary the support of the value distribution, with each 
step doubling the support of the previous step, thus 
increasing the value dispersion. As the support in­
creases, both dynamic auctions use more iterations 
and a longer running time. Again, PAC consistently 

T PAC DGS PAC DGS VCG 

5,3••· 3.0 3.0 NA 0.07 0.04 0.007 3.2•• 
4.9•·· 5.7 5.9 -1.0 0.17 0.12 0.005 8.2••· 
4.3•·· 8.3 8.3 0.1 0.36 0.22 0.006 12.0··· 
5.6*** 10.1 10.4 -0.7 0.59 0.35 0.009 11.6*** 
6.8••• 12.9 12.4 1.1 0.89 0.50 0.014 13.8*** 
9.5•·· 13.2 14.5 -2.1* 1.18 0.69 0.014 10.3••· 

12.0··· 14.4 16.3 -3.8*** 1.63 0.94 0.022 10.7•·· 
10.6•·· 15.3 17.0 - 2.8** 1.91 1.13 0.023 11.5••• 
13.6*** 15.3 17.0 -3.0** 2.40 1.36 0.031 14.6*** 
16.3*** 16.6 18.4 -2.9** 3.06 1.65 0.042 13.7*** 

outperforms DGS in privacy preservation, resulting in 
2.9%-17.5% less entropy reduction. The privacy­
preservation advantage of PAC is more prominent 
when the support is smaller (valuation dispersion is 
low). This is because the privacy-preservation ad­
vantage of our PAC auction is more pronounced 
when the demand set is large, which is more likely 
when the valuations for different items are less dis­
persed (i.e., the support is smaller). Interestingly, as 
the support increases, the running time of PAC be­
comes closer to that of DGS, from 2.5-1.4 times. This 
is consistent with our intuition that there are fewer 
cases of large demand sets as the support increases, 
reducing the difference between partial and full 
reporting. The finding using residual range is similar, 
with the difference more significant when the support 
is smaller. 

5.4.4. Experiment 4: Scalability Test. Our fourth ex­
periment examines how our PAC auction scales as the 
problem size increases and benchmarks PAC against 
DGS and VCG for large-scale problems in terms of 
iterations and running times. In this experiment, we 
study a series of nine problem sizes, from 2 x 1 (two 
bidders and one item) to 512 x 256, with each step 

Table 5. Experiment 3: Benchmarking Tests with Different Support 

Entropy reduction Residual range Iterations Running time (sec) 

Support PAC DGS VCG PAC DGS PAC DGS PAC DGS VCG 

0, 3 49.0 59.4 90.0 -12.1 ·•· 0.66 0.54 16.o••• 4.4 4.9 -4.1•·· 0.58 0.23 0.011 17.6*** 
0, 7 66.2 76.9 135.0 -9.o••• 0.64 0.57 11.2••· 8.1 7.9 0.6 0.64 0.32 0.008 14.o·•• 
0, 15 78.3 89.0 180.0 -8.5*** 0.63 0.58 8.3•·· 10.9 11.2 -0.5 0.77 0.46 0.012 6.1 ••• 

0, 31 90.9 98.7 225.0 -4_3••· 0.62 0.59 4.2••· 13.2 13.2 0.1 0.84 0.53 0.009 7.6•·· 
0, 63 101.8 106.3 270.0 -2.4* 0.62 0.59 3.2•· 13.5 13.7 -0.3 0.85 0.56 0.011 6.2••· 
0, 127 115.3 124.4 315.0 -4.2*** 0.61 0.60 1.8 14.5 15.0 -1.1 0.87 0.58 0.011 5.8*** 
0, 255 126.9 130.6 360.0 -1.5 0.61 0.60 2.0• 14.5 14.6 -0.4 0.90 0.62 0.011 5.7•·· 

Notes. Paired /-tests comparing PAC and DGS auctions. 
•p < 0.05; **p < 0.01; ·••p < 0.001. 
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doubling the numbers of bidders and items in the 
previous step. We consider the largest problem, 
which has 132,072 (= 512 x 256) decision variables, a 
stress test of the PAC auction's scalability. For each 
problem size, we generate 10 random scenarios, 
conduct a PAC auction for each scenario, and report 
the average outcome metrics in Table 6. 16 We also run 
DGS and VCG on the same scenarios and record their 
running times and number of iterations (when ap­
plicable). Besides the usual metrics of iterations and 
running times, we also track the total bid revisions and 
the total inquiries for PAC, as described in the PAC 
auction example. These help us understand the 
amount of activity by the bidders and the auctioneer. 

We visualize the PAC results in Figure 2. To ac­
commodate a large range of problem sizes, we use 
logarithmic scales for both axes. In such a log-log 
plot, a linear line represents a power-law relationship, 
with log(y) = log(a) + blog(x) translating toy= axb. 

As we can see from Figure 2 and Table 6, as the 
number of variables (m * n) increases, the number of 
iterations first increases and then decreases. In fact, 
for the largest problem, the average number of iter­
ations is only 2.1. This is because when the numbers of 
bidders and items are both high, the chances of two 
bidders "clashing" over the same item is low because 
each bidder has many choices to choose from. As a 
result, the PAC algorithm spends most of the time 
rearranging bidders rather than increasing prices. 

The number of total bid revisions, the number of 
total inquiries, and running time all have a power-law 
relationship with the number of variables. The num­
ber of total bid revisions (b = 0.8) shows a deceler­
ating trend, whereas the running time (b = 1.1) shows 
a slightly accelerating trend. The number of total 
inquiries (b = 0.96) is approximately linear in the 
number of variables. We note that the number of bid 
revisions is far less than the theoretical limit. For the 
three largest problems, the number of total bid re­
visions is 6.7%-10.5% of the number of variables-the 

Table 6. Experiment 4: Scalability Test 

PAC 

m n m x n Total bid revisions Total inquiries 

2 1 2 1.0 1.0 
4 2 8 3.5 4.8 
8 4 32 14.4 23.5 

16 8 128 36.3 88.6 
32 16 512 92.2 305.7 
64 32 2,048 233.3 1,243.7 

128 64 8,192 581.2 4,694.6 
256 128 32,768 2,203.4 14,771.9 
512 256 131,072 13,780.2 44,950.1 

Notes. Paired I-tests comparing PAC and DGS auctions. 
*p < 0.05; ·••p < 0.001. 
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theoretical upper limit for each iteration; the number of 
total inquiries is 34%-57% of the number of variables. 
The total running time for the largest problem with 
131,072 variables was about 4 hours. In contrast, DGS 
was unable to solve problems of 256 x 128 or larger 
under 10 hours-we had to terminate DGS pre­
maturely. This is likely because the PAC auction is 
more efficient in finding an overdemanded set by 
maintaining a provisional assignment. In terms of 
running times, the gap between PAC and VCG be­
comes narrower for larger problems. For instance, for 
the 512 x 256 problems, VCG used 6,172 seconds on 
average, whereas our PAC auction used 14,580 sec­
onds, merely 2.2 times the VCG running time. These 
results suggest that our PAC auction is scalable to a 
problem size of over 100,000 variables. 

6. Conclusion 
Motivated by bidders' privacy concerns, we have 
proposed (1) an ascending clock auction for unit­
demand assignment problems that economizes on 
bidder information revelation, (2) a new, general­
purpose measure of bidder information revelation 
for auctions and other mechanisms based on Shan­
non's entropy, and (3) a simulation-based numerical 
procedure for computing this measure for ascending 
clock auctions. 

The key departure of our auction design is that it 
leverages partial reporting without sacrificing im­
portant economic properties such as sincere bidding. 
This partial reporting design leads to less informa­
tion revelation. Our numerical simulations show that 
our auction consistently outperforms a full-reporting 
benchmark by up to 18% savings in the amount of 
information revealed. Our results show that the in­
formational savings of PAC auctions is more signif­
icant for larger problems. This is because in larger 
problems, bidders only need to reveal a small pro­
portion of their valuations to achieve a successful 
allocation. 

Iterations Running time (sec) 

PAC DGS T PAC DGS VCG 

2.0 2.0 NA 0.06 0.04 0.01 1.3 
3.9 4.4 -1.9 0.10 0.11 0.01 -1.3 
9.4 9.1 0.4 0.41 0.35 0.02 2.4 

13.8 16.6 -2.1 1.39 1.26 0.04 1.2 
16.9 20.3 -2.4* 5.58 3.59 0.25 5.4*** 
14.3 26.0 -6.5*** 25.29 16.51 1.08 8.2••· 
12.5 26.7 -7.7*** 124.90 229.21 27.18 -1.8 
6.3 NA NA 1,371.00 NA 343.50 NA 
2.1 NA NA 14,580.00 NA 6,712.00 NA 
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Figure 2. (Color online) Experiment 4: Scalability Log-Log Plots 
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Our examples suggest that information savings 
occur because only one of the tying marginal bidders 
is required to submit a new bid and because a bidder 
is only required to reveal one of several preferred 
alternatives. Information savings may also come from 
different price paths followed by PAC auctions, 
though further investigation is required to assess the 
contribution of each source. 

We contribute to the dynamic auction literature by 
demonstrating the possibility of economizing on 
bidder information revelation while maintaining 
desirable economic properties. In our auction, sincere 
bidding is an ex post Nash equilibrium, and ending 
prices depend only on starting prices. Efficient allo­
cation is a special case of our auction when starting 
prices are set to be the reservation values of the 
auctioneer. Our auction is sincere even when it starts 
with inefficient prices. This is important because 
sellers often pursue revenue maximization at the cost 
of efficiency. 

Our entropy-based measure of information reve­
lation and the associated computational framework 
lay the ground work for more research on privacy 
preservation in mechanism design. The measure com­
pares the amount of information in the prior and pos­
terior of a bidder's valuations. It is general enough to 
be used in different mechanisms-including auction 
and nonauction mechanisms and one-shot and dy­
namic mechanism&--so that we can compare their abil­
ity to preserve participant privacy. There have been 
many informal remarks about privacy-preservation 
properties of different mechanisms (e.g., second-versus 

8192.00 • 

256.00-

8.00-

a = -4.6 , b = 1.1 , R2 = 0.97 

' ' ' 16 256 4096 
variables (m*n) 

Total inquiries 

' . ' 16 256 4096 
variables (m*n) 

' 65536 

. 
65536 

first-price auctions, uniform- versus discriminative­
price multiunit auctions). We hope this measurement 
paves the way for formally and systematically studying 
this important dimension of mechanism design. 

The PAC auction has a number of properties that 
make it attractive for practical use. First, bidding is 
more natural in our auction than in full-reporting 
designs. In our auction, bidders, when asked, only 
need to decide whether to stay or leave. When they 
decide to leave, they only need to name on a single 
alternative as their new bid. This type of simple bids 
is intuitive and easy to formulate. Second, the PAC 
auction maintains a provisional assignment for bid­
ders and updates it when there are excessive de­
mands. This design is more transparent for bidders 
than DGS and other primal-dual designs that may 
leave some bidders unassigned during the auction. 
Third, though the PAC uses more queries, the amount 
of work for each individual bidder is quite manage­
able, because not all bidders are asked in each query, 
and when they are, their decisions are simple. For 
example, in our simulation for the 128 (items) x 64 
(bidders) problems, on average each bidder needs to 
submit nine bids during the entire auction. 

Finally, the PAC auction proves to be quite scalable. 
Our simulations suggest that it can handle assign­
ment problems with over 100,000 decision variables. 
Our initial evidence suggests that it outperforms the 
DGS auction for large problems in terms of running 
time. When the numbers of bidders and items are 
large, it may be more optimal to delegate bidding 
activities to an autonomous software agent that acts 
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on behalf of the bidder. The privacy-preservation 
benefit of our auction still applies in such "proxy" 
auctions since the software agent would also reveal 
less information about the bidder. 

There are many directions for extending the current 
work. First, it would be useful to conduct further 
analysis on the complexity and scalability of the PAC 
auction and pin down the sources of its informational 
advantages, given our promising initial results. Sec­
ond, future research could optimize the heuristics 
for choosing auction paths, which could lead to fur­
ther improvements on bidder privacy and speed. 
Third, we have provided a proof-of-concept pro­
cedure for calculating the entropy-based measure of 
information revelation. There is still room for opti­
mizing this procedure and adapting it for more 
complex use cases. Fourth, we believe that much can 
be gained by comparing other auction formats (e.g., 
first- versus second-price auctions) using our pro­
posed information-revelation measure. Fifth, we have 
so far limited ourselves to the amount of informa­
tion revealed. Our reporting design undoubtedly also 
impacts the amount of communication and the com­
putational complexity of the winner determination 
problem, which are good candidates for a next step. 
Finally, it will be interesting to see how our dynamic 
auction design could be extended to more complex 
assignment problems, such as multiunit and combi­
natorial assignments, and cases where bidder prefer­
ences may shift at different prices. We conjecture that 
with the increasing complexity of the demand space, 
as-needed partial reporting has even higher value. 

Appendix. Proofs 
A.1. Proof of Lemma 1
We first argue that when all bidders are sincere, then the 
auction must stop in finite iterations. Suppose that it does 
not. Because at any t at least one price should increase, as 
t � oo, there must exist one item j whose price is high 
enough such that no sincere bidder would bid on this item. 
But the price of an unassigned item must equal its starting 
price (Observation 3), a contradiction. Now we consider 
that all but one bidder bid sincerely. Again, for a large 
enough t, at least one item has a price high enough and it 
exceeds all bidders' valuations. Because the item must be 
assigned and any sincere bidder must have left the item 
already, the only remaining bidder on this item must be 
the insincere one. But with just one bidder on this item, the 
price of this item will never rise again. So the auction of the 
rest of the items, in which only the sincere bidders par­
ticipate, must end in finite iterations. D 

A.2. Proof of Lemma 2
We discuss two cases: (a) 1 is assigned to the same item, say 
j, in both outcomes, and (b) 1 is not. In case (a), we let I = 1. 
Because 1 strictly prefers (x', p') to (x, p ), we clearly have 
p1 < Pj· We now consider case (b). Suppose that 1 is assigned
to h in x and ji in x' (h -f:; ji). Because bidder 1 strictly prefers 
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(x', p') to (x, p) and ji is a sincere bid at p, we have V1j, -
P1ii 

< V1h - p1, and V1j, - Ph :5 vlj, - Pli,, which implies that 

(A.1) 

By Observation 3, ji must be assigned in (x, p) because 
Ph > p12 

� p7,. Let C be the winner of item ji in (x, p ). Because
the price of ji is lower in (x', p'), C must not drop out and be 
a winner of some item h in (x', p'). The fact that C bids 
sincerely at p and p' (C is not 1) implies that vc,h - Ph � 
Vc,j, - Ph and Vc,j, - v;

3 
� VC,h - P;, • So 

Combining this with Equation (A.l), we have 

(A.2) 

Similarly, we can find another bidder who is the winner of 
h in (x, p) and a winner of another item at (x', p'). Because we 
have a finite number of items, we must end up with a bidder 
who is a winner of item j in (x, p )-thus, we have a per­
mutation. By construction, every item in this permutation 
has a lower final price in (x', p') than in (x, p ). □ 

A.3. Proof of Lemma 3
We prove Lemma 3 by contradiction. Suppose that the two 
outcomes result from auctions A and B, respectively, and 
bidder 1 strictly prefers (x', p') to (x, p ). By Lemma 2, there 
must be a subset of bidders I such that 1 EI, x'(I) is a 
permutation of 1(1), and p1 < pj, Vj E x(I).

Case 1. Suppose that I includes all the assigned bidders 
in x. Consider the last reassignment involving items x(I) in 
auction A. There are only two possible subcases: 

(a) A bidder i chooses the outside option O over item j E 
x(I) at price pj and all other items at their respective prices. 
Because bidder i bids sincerely, i is indifferent between j 
and O at this price, which means i strictly prefers j to 0 
when j's price is p1 < Pj· Since i is not a winner of any item in 
x'(I) in auction B and he prefers j to O under p', he must be a 
winner of another item, say k¢. x'(I), and strictly prefer k to 0 
under p'. This contradicts the fact that i chooses O over kin 
auction A when Pk = PZ :5 P1c· 

(b) The last reassignment involves a bidder i moving into
an unassigned item j E x(I). By Observation 3, item j must still 
have a price of Pj = pJ, contradicting Pj > p1 � pJ. 

Case 2. Suppose that I does not include all the assigned 
bidders in (x, p). Consider the last reassignment involving 
items x(I) in auction A. By (b), the last reassignment cannot 
be some bidder moving into an unassigned item in x(I). The 
only other possibility is a bidder leaving x(I). Suppose that 
bidder i is the last bidder leaving x(I). Suppose further that 
he or she leaves item h E x(I) at time t of the auction when j's 
price is Ph. Because PJ, <Pi,, i must be a winner of some item 
under p', say item jz. By sincere bidding of i (recall that 
1 E x(I) and ii/. x(I)) at two auctions, we have v;,h - p1, :5 V;,j -
p1, and v;,ii - Pii � v;,h - pJ

2
, respectively. Because v;, < Pii

and pJ, :5 Ph (no price drop), we can infer 

(A.3) 
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From this point on we can repeat the argument of Lemma 2 
and obtain a new set of bidders 11 = I U ti, i E ti, such that 
x'(l1) is a permutation of x(l1) and p1 < Pi, Vj E x(l1). By in­
duction and the fact that there are a limited number of 
bidders, we must end with case 1-a contradiction. □ 

A.4. Proof of Proposition 1 
Immediate from Lemma 3. □ 

A.5. Proof of Proposition 2 
We reformulate the assignment problem by replacing auc­
tioneer O with m dummy agents {n + 1, .. . ,n + m} and the 
outside option O with n dummy items {m + 1, ... , m + n}. 
With the reformulated assignment problem, any feasible 
assignment can be represented by a permutation of bidders 
(including dummies). 

Consider a sincere auction outcome (x, p) E 0. We can 
easily verify that when the starting prices are set to the 
auctioneer's reservation valuations, the condition 

x1 E D1(p ), i E {l, 2, ... , m, m + 1, m + 2, ... , m + n} (A.4) 

holds for both real and dummy bidders. In other words, 
every bidder, including dummy ones, weakly prefers his 
or her assignment. 

We now claim that any cyclic permutation of x weakly 
decreases efficiency. We suppose that i1, i2, ... , i1 are origi­
nally assigned to items ji,ji, ... ,j,, but a cyclic permutation 
reassigns them to h,h, ... ,j,,ji. By condition (A.4), we know 
that 

v;,h - Ph ~ v;,i, - Pi,, 

V;,j, - Pi, ~ Vi]j, - Pi,, 

V;,j, - Pi, ~ V;,h - Ph. 

Adding two sides of inequations, we have 

~ v1,ik ~ ~ v;,i,., + v1,h. 
k=l..l k=l..1-1 

The left (right)-hand side is the efficiency of the original 
(permuted) assignment, implying that the cyclic permuta­
tion weakly decreases efficiency. Because any permutation 
can be decomposed into several disjoint cyclic permuta­
tions, we conclude that any feasible assignment other than x 
weakly decreases efficiency. □ 

A.6. Proof of Proposition 3 
Consider an auction outcome (x, p). Without loss of gen­
erality, we assume that bidder 1 is assigned to h E 1 un­
der x. We consider an alternative economy where bidder 1 is 
excluded from participation. The VCG payment for bid­
der 1 can thus be calculated as the difference in social wel­
fare of all other players in the original and alternative econ­
omies. We compare auction payments and VCG payments 
for two cases: (a) Ph > pJi and (b) Ph = pJi • 

Case 1. We construct a new, efficient assignment x in the 
alternative economy and use it to calculate the VCG payment 
for bidder 1. There must be a last bidder who leaves h at price 
p1• Suppose that this bidder is i2 and assigned to h E 1 under 
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x. If Pi> > p7,, we continue to search for the last bidder who 
leaves h, and so on. Eventually we can find a series of bidders 
{i2, i3, ... , ik} assigned to {h, h, ... , M such that i1 is the last 
bidder to leave h-v for I= 2 ... k, and the price of item j, is 
strictly above its starting price except Pi, = pJ.. We now 
construct a new assignment x under which every bidder in 
the series {i2, i3, ... , ik} takes the place of the preceding bidder 
(e.g., bidder i2 is assigned to item h), i1 is unassigned, and all 
other bidders keep their assignments. For bidder i2, we know 
by construction that (t is the moment of the last bidder de­
parture at h) 

v;,,it - Pit ~ v;,,h - PJ, :?: v;,,i, - Pi,, (A.5) 

where the first inequality is by sincere bidding and the 
second inequality is because of nondecreasing prices. Hence, 
given p, i2 would prefer his or her assignment ji. The same 
argument can be made for other bidders in the series 
{i2, i3, ... , ik}- Overall, we conclude that x1 E D;(p) holds for 
all bidders, and by Proposition 2, x is efficient in the al­
ternative economy. 

By sincere bidding in the original economy, we also have 
v;,,h - Ph ~ V;2,j, - Pi>. Combining this with (A.5), we have 

V;,,h - Ph = V;,,j, - Ph. (A.6) 

Equation (A.6) is also true for other bidders in the series. 
Summing up all equations and rearranging terms, we have 

(v1,,h + v1,,j, + ... + v;,,i>-, + Pik) - (v;,,h + V;3,j, + ... + v;,,i,) =Ph. 

Note that Pi> = p7' = vo,ik, so the first parentheses represent 
the social welfare of bidders {i2, i3, ... , ik} and the auctioneer 
in the alternative economy, and the second parentheses, the 
original economy. So the left-hand side is exactly the VCG 
payment of bidder 1 for assignment x, suggesting that the 
auction payment Ph for bidder 1 coincides with his VCG 
payment for the same assignment. o 

A.7. Proof of Lemma 4 
Because (x, p) E 0, by Lemma 3, bidder i weakly prefers 
(x, p) to any outcome in 0_1 . Because O ~ 0_1, the bidder 
must also weakly prefer (x, p) to any other (x', p') E 0. To 
see that p is indeed the smallest price vector in 0, we dis­
cuss two cases. (a) If bidder i is assigned to the same item 
in x and x', Px, ~ p:, holds trivially. Otherwise, say, (b) i is 
assigned to item 1 under x but 2 under x'. We have 

V;,2 - P2 :?: V;,1 - Pi 

V;,1 - Pl :?: V;,2 - P2, 

where the first inequality is because item 2 must be weakly 
preferred by i under (x', p') and the second inequality is 
because i weakly prefers (x, p) to (x', p'). These two in­
equalities imply that p1 ~ p1. Hence, any assigned item must 
have the lowest price in 0. If the item is unassigned, its price 
is the starting price, which is the lowest possible price in 0. 
Overall, we conclude that p is the lowest price in 0. □ 

A.8. Proof of Proposition 4 
The proof of path independence follows naturally from 
Lemma 4, which shows that all auction paths must end with 
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the same smallest price. To see that identical items have the 
same ending price, we suppose two items 1 and 2 have 
different final prices. Without loss of generality, we assume 
that p1 > p2. Because their starting prices are the same, 1 
must be assigned to a bidder, say, bidder 1. By sincereness, 
we have v11 - p1 � v12 - p2. But because V11 = v12 (because 
they are identical), we have p1 � p2, a contradiction. □ 

Endnotes 
1 The reputation of the auctioneer in the market may engender some 
level of trust. However, reputation as a tool for addressing privacy 
concerns of bidders has its own limitations-that is, it may give well­
established auctioneers a great advantage over newcomers, which 
deters entry and negatively impacts the efficiency of the market. 
2 Several practical auction designs for more complex problems, such 
as simultaneous multiround auctions and combinatorial clock auc­
tions, do not require full reporting (see chapters 1, 5, 7, 8, and 15 in 
the Handbook of Spectrum Auction Design; Bichler and Goeree 2017). 
These auctions use activity rules to mitigate insincere bidding. More 
specifically, the activity rules counter-but may fail to completely 
overcome-the incentive for a strategic wait-and-see behavior by 
the bidders. These auction designs are not directly comparable to 
ours because they are designed for more general demand structures 
and have quite different designs. Some practical dynamic auction 
designs for unit-demand assignment problems do not require full 
reporting, but they do not have the same economic properties as 
ours (see our literature review). 
3 de Vries et al. (2007) briefly discuss how some ascending auctions, 
such as the auction in (Ausubel and Milgrom 2002), can be interpreted 
as a result of replacing the primal-dual algorithm-when solving the 
efficient allocation problem-with a subgradient algorithm. The 
subgradient algorithm does not require full reporting. However, as 
noted by de Vries et al. (2007), it needs not converge in finite iter­
ations, and the prices in such auctions can actually decrease. 
4 A one-way function is a function whose value is "easy" to compute for 
every input but is "hard" to invert, where easy and hard are in the 
sense of the computational complexity theory. The existence of such 
functions is an open conjecture. 
5 If i' is also singularly assigned, find a replacement bidder for i', and 
so on, until we have a chain of replacement that ends with a non­
singular bidder. We can always find a replacement bidder i' whose 
revealed demand includes item 1. This is because, by our way of 
constructing the active set (see step 2e for details), the only way a 
singular item 1 can enter the active set is through active set expansion, 
where a marginal bidder j at item 2 is indifferent between item 2 and 
item 1, and item 1 is added to the active set as a result. The chain of 
replacement always ends in finite steps because there must be at 
least one active bidder who is not singular. 
6 Our results still hold as long as an item with more than one bidder 
is chosen as an initial active set. 
7 Again, if a chain of replacement is required, expand the active set to 
include all items on the chain. 
8 The auction prices can increase discretely or continuously since our 
auction design works for both discrete and continuous values. 
9 We note that the outside option cannot enter the active set via 
expansion. The argument is as follows. We suppose that it has not 
entered the active set so far. The only way for it to enter the active set 
is via active set expansion, which would require that the current 
marginal bidder has previously been assigned to the outside option 
and left it-a contradiction. 
10 Tue DGS auction closely resembles the Hungarian method (Demange 
et al. 1986). While the Hungarian method finds augmenting paths by 
computing full demand sets from known valuations, DGS does so by 
asking bidders to report them. 
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11 Our proof strategy contrasts with those used in the literature. The 
literature typically assumes the auctioneer has O reservation values 
and the auction starts with a O price vector, then shows that the 
auction terminates with a price vector that is minimal within a lattice 
of Walrasian equilibria (Demange et al. 1986, Mishra and Talman 
2010, Andersson et al. 2013, Ausubel 2006, de Vries et al. 2007). 
Showing efficiency and "strategy proofness" (a concept related to 
sincereness) follow almost immediately. Our auction allows for non­
trivial reservation values and arbitrary starting prices, and therefore 
needs not be efficient. Thus, we have followed a different approach that 
first establishes sincereness without requiring efficiency then uses 
sincereness to study auction's terminal state. 
12 When starting prices are equal to the seller's reservation values, our 
definition of O reduces to the definition of competitive prices in DGS 
(1986). When starting prices and reservation values are 0, the ele­
ments of Oare simply the Walrasian equilibria as defined in Gui 
and Stacchetti (2000). 
13We note that in an assignment with more general preferences 
(i.e., complementary demands), a Walrasian equilibrium may not 
exist, and even if it exists, the minimum Walrasian price need not 
coincide with the VCG payments (Gui and Stacchetti 1999, 2000). 
14 For an excellent reference on entropy as well as for an intuitive 
explanation of why it is an appropriate tool for quantifying in­
formation, see chapter 2 of Cover and Thomas 1991. 
15 We are measuring the information revealed by an event ex post. 
This can be viewed as a special case of the extensive literature on 
measuring, ex ante, the expected information revealed by a random 
variable Y. In this case, the information Y reveals (ex ante) about X, 
denoted by R(X; Y), is the average information revealed by each 
possible outcome of Y. In other words, it is the sum of Pr(Y = y)R(X, y) 
over all possible outcomes of Y. The expression R(X, Y) is often re­
ferred to in the literature as the mutual information between X and Y. 
16 Because the goal here is scalability, and it is time-consuming to 
compute the entropy reduction for extremely large problems, we do 
not compute entropy reduction in this experiment. Also, we keep the 
number of scenarios to 10 to limit the total running time for large 
problems. 
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